
Introduction to
Operations Research

Deterministic Models

JURAJ STACHO

Department of Industrial Engineering and Operations Research

Contents

1 Mathematical modeling by example 1

1.1 Activity-based formulation. 3

2 Linear Programming 5

2.1 Formulating a linear program. 5

2.2 Summary and further tricks. 8

3 Solving linear programs 10

3.1 Graphical method. 10

3.2 Fourier-Motzkin Elimination (FME). 13

4 Simplex method 16

4.1 Canonical form. 16

4.2 Simplex method by example. 17

4.3 Two phase Simplex method. 21

4.4 Special cases. 21

4.5 Phase I. 23

5 Linear Algebra Review 27

5.1 Systems of linear equations. 29

5.2 Summary . 31

6 Sensitivity Analysis 33

6.1 Changing the objective function. 35

6.2 Changing the right-hand side value. 37

6.3 Detailed example. 39

6.4 Adding a variable/activity. 43

ii

iii

6.5 Adding a constraint. 43

6.6 Modifying the left-hand side of a constraint. 44

7 Duality 45

7.1 Pricing interpretation. 45

7.2 Duality Theorems and Feasibility. 47

7.3 General LPs. 47

7.4 Complementary slackness. 48

8 Other Simplex Methods 52

8.1 Dual Simplex Method. 52

8.2 Upper-Bounded Simplex. 54

8.3 Lower bounds. 55

8.4 Dual Simplex with Upper Bounds. 56

8.5 Goal Programming. 57

9 Transportation Problem 59

9.1 Transportation Simplex Method. 60

10 Network problems 65

10.1 Shortest Path Problem. 66

10.2 Minimum Spanning Tree. 68

10.3 Maximum Flow problem. 69

10.4 Minimum-cost Flow problem. 72

10.5 Network Simplex Algorithm. 72

10.6 Network Simplex Algorithm with capacitites. 76

10.7 Complete example. 77

10.8 Summary . 83

11 Game Theory 85

11.1 Pure and Mixed strategies. 86

11.2 Nonconstant-sum Games. 88

12 Integer programming 89

12.1 Problem Formulation. 89

12.2 Cutting Planes. 92

12.3 Branch and Bound. 95

13 Dynamic Programming 103

14 Analysis of efficiency 113

14.1 Algorithmic Complexity . 115

Preface

These lecture notes were written during the Fall/Spring 2013/14 semesters to accompany lectures of the course
IEOR 4004: Introduction to Operations Research - Deterministic Models. The notes were meant to provide a succint
summary of the material, most of which was loosely based on the bookWinston-Venkataramanan: Introduction to
Mathematical Programming (4th ed.), Brooks/Cole 2003. Other material (such as the dictionary notation) was adapted
from Chv́atal: Linear Programming, Freeman 1983andDantzig-Thapa: Linear Programming, Springer-Verlag 1997.
Various other bits were inspired by other lecture notes and sources on the Internet. These notes are not meant to replace
any book; interested reader will find more details and examples in the Winston book in particular. I would like to thank
students that helped me correct numerous mistakes in the earlier versions of the notes. Most likely all mistakes have
not been yet caught, and so the reader should exercise caution should there be inconsistencies in the text. I am passing
on the notes to Prof. Strickland who will continue making adjustments to the material as needed for the upcoming
offerings of the course. Of course, any suggestions for improvements are welcomed from anyone interested.

Juraj Stacho
July 26, 2014

iv

1
Mathematical modeling by example

Product mix

A toy company makes two types of toys:toy soldiersand trains. Each toy is produced in two stages, first it is
constructed in a carpentry shop, and then it is sent to a finishing shop, where it is varnished, vaxed, and polished. To
make one toy soldier costs $10 for raw materials and $14 for labor; it takes 1 hour in the carpentry shop, and 2 hours
for finishing. To make one train costs $9 for raw materials and$10 for labor; it takes 1 hour in the carpentry shop, and
1 hour for finishing.

There are 80 hours available each week in the carpentry shop,and 100 hours for finishing. Each toy soldier is sold for
$27 while each train for $21. Due to decreased demand for toy soldiers, the company plans to make and sell at most
40 toy soldiers; the number of trains is not restriced in any way.

What is the optimum (best) product mix (i.e., what quantities of which products to make) thatmaximizesthe profit
(assuming all toys produced will be sold)?

Terminology

decision variables: x1, x2, . . . , xi, . . .

variable domains: values that variables can take x1, x2 ≥ 0

goal/objective: maximize/minimize

objective function: function to minimize/maximize 2x1 + 5x2

constraints: equations/inequalities 3x1 + 2x2 ≤ 10

Example

Decision variables:

• x1= # of toy soldiers
• x2= # of toy trains

Objective: maximize profit

• $27− $10− $14 = $3 profit for selling one toy soldier⇒ 3x1 profit (in $) for sellingx1 toy soldier
• $21− $9− $10 = $2 profit for selling one toy train⇒ 2x2 profit (in $) for sellingx2 toy train

⇒ z = 3x1 + 2x2
︸ ︷︷ ︸

objective function

profit for sellingx1 toy soldiers andx2 toy trains

1

2 CHAPTER 1. MATHEMATICAL MODELING BY EXAMPLE

Constraints:

• producingx1 toy soldiers andx2 toy trains requires
(a) 1x1 + 1x2 hours in the carpentry shop; there are 80 hours available
(b) 2x1 + 1x2 hours in the finishing shop; there are 100 hours available

• the numberx1 of toy soldiers produced should be at most 40

Variable domains: the numbersx1, x2 of toy soldiers and trains must be non-negative (sign restriction)

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

We call this aprogram. It is a linear program, because the objective is a linear function of the decision variables, and
the constraints are linear inequalities (in the decision variables).

Blending

A company wants to produce a certain alloy containing 30% lead, 30% zinc, and 40% tin. This is to be done by mixing
certain amounts of existing alloys that can be purchased at certain prices. The company wishes to minimize the cost.
There are 9 available alloys with the following compositionand prices.

Alloy 1 2 3 4 5 6 7 8 9 Blend

Lead (%) 20 50 30 30 30 60 40 10 10 30
Zinc (%) 30 40 20 40 30 30 50 30 10 30
Tin (%) 50 10 50 30 40 10 10 60 80 40
Cost ($/lb) 7.3 6.9 7.3 7.5 7.6 6.0 5.8 4.3 4.1minimize

Designate adecisionvariablesx1, x2, . . . , x9 where

xi is theamount of Alloy i in aunit of blend

In particular, the decision variables must satisfyx1 + x2 + . . . + x9 = 1. (It is a common mistake to choosexi the
absoluteamount of Alloyi in the blend. That may lead to a non-linear program.)

With that we can setup constraints and the objective function.

Min 7.3x1 + 6.9x2 + 7.3x3 + 7.5x4 + 7.6x5 + 6.0x6 + 5.8x7 + 4.3x8 + 4.1x9 = z [Cost]

s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 1
0.2x1 + 0.5x2 + 0.3x3 + 0.3x4 + 0.3x5 + 0.6x6 + 0.4x7 + 0.1x8 + 0.1x9 = 0.3 [Lead]
0.3x1 + 0.4x2 + 0.2x3 + 0.4x4 + 0.3x5 + 0.3x6 + 0.5x7 + 0.3x8 + 0.1x9 = 0.3 [Zinc]
0.5x1 + 0.1x2 + 0.5x3 + 0.3x4 + 0.4x5 + 0.1x6 + 0.1x7 + 0.6x8 + 0.8x9 = 0.4 [Tin]

Do we needall the four equations?

Product mix (once again)

Furniture company manufactures four models of chairs. Eachchair requires certain amount of raw materials (wood/steel)
to make. The company wants to decide on a production that maximizes profit (assuming all produced chair are sold).
The required and available amounts of materials are as follows.

1.1. ACTIVITY-BASED FORMULATION 3

Chair 1 Chair 2 Chair 3 Chair 4 Total available

Steel 1 1 3 9 4,4000 (lbs)
Wood 4 9 7 2 6,000 (lbs)

Profit $12 $20 $18 $40 maximize

Decision variables:

xi = the number of chairs of typei produced

eachxi is non-negative

Objective function:

maximize profitz = 12x1 + 20x2 + 18x3 + 40x4

Costraints:

at most4, 400 lbs of steel available:x1 + x2 + 3x3 + 9x4 ≤ 4, 400

at most6, 000 lbs of wood available:4x1 + 9x2 + 7x3 + 2x4 ≤ 6, 000

Resulting program:

Max 12x1 + 20x2 + 18x3 + 40x4 = z [Profit]

s.t. x1 + x2 + 3x3 + 9x4 ≤ 4, 400 [Steel]
4x1 + 9x2 + 7x3 + 2x4 ≤ 6, 000 [Wood]

x1, x2, x3, x4 ≥ 0

1.1 Activity-based formulation

Instead of constructing the formulation as before (row-by-row), we can proceed by columns.

We can view columns of the program asactivities. An activity has

inputs: materials consumed per unit of activity (1lb of steel and 4lbs of wood)

outputs: products produced per unit of activity ($12 of profit)

activity level: a level at which we operate the activity (indicated by a variablex1)

Chair 1
x1

1lb of steel

4lbs of wood
$12 of profit

inputs outputsactivity

Operating the activity “Chair 1” at levelx1 means that we producex1 chairs of type 1, each consuming 1lb of steel,
4lbs of wood, and producing $12 of profit. Activity levels arealways assumed to benon-negative.

The materials/labor/profit consumed or produced by an activity are calleditems (correspond to rows).

The effect of an activity on items (i.e. the amounts of items that are consumed/producedby an activity) areinput-output
coefficients.

The total amount of items available/supplied/required is called theexternal flow of items.

We chooseobjective to be one of the items which we choose to maximize or minimize.

Last step is to writematerial balanceequationsthat express the flow of items in/out of activies and with respect to
the external flow.

4 CHAPTER 1. MATHEMATICAL MODELING BY EXAMPLE

Example

Items: Steel

Wood

Profit

External flow of items:
Steel: 4,400lbs of available (flowing in)

Wood: 6,000lbs of available (flowing in)

Objective:

Profit: maximize (flowing out)

Activities:

producing a chair of typei wherei = 1, 2, 3, 4, each is assigned an activity levelxi

Chair 1: Producing 1 chair of type 1
consumes 1 lb of Steel

4 lbs of Wood
produces $12 of Profit

Chair 1
x1

1lb of Steel

4lbs of Wood
$12 of Profit

Chair 2: Producing 1 chair of type 2
consumes 1 lb of Steel

9 lbs of Wood
produces $20 of Profit

Chair 2
x2

1lb of Steel

9lbs of Wood
$20 of Profit

Chair 3: Producing 1 chair of type 3
consumes 3 lbs of Steel

7 lbs of Wood
produces $18 of Profit

Chair 3
x3

3lbs of Steel

7lbs of Wood
$18 of Profit

Chair 4: Producing 1 chair of type 4
consumes 9 lbs of Steel

2 lbs of Wood
produces $40 of Profit

Chair 4
x4

9lbs of Steel

2lbs of Wood
$40 of Profit

The material balance equations:

To see how to do this, consider activity Chair 1: consumes 1lbof Steel, 4lbs of Wood, and produces $12 of Profit.
Thus at levelx1, we consume1x1 lbs of Steel,4x1 lbs of Wood, and produce12x1 dollars of Profit.

Chair 1
x1

1lb of Steel

4lbs of Wood
$12 of Profit

. . .+ 12x1 + . . . [Profit]

. . .+ 1x1 + . . . [Steel]

. . .+ 4x1 + . . . [Wood]

On the right, you see the effect of operating the activity at level x1. (Note in general we will adopt a differentsign
convention; we shall discuss is in a later example.)

Thus considering all activities we obtain:

12x1 + 20x2 + 18x3 + 40x4 [Profit]
x1 + x2 + 3x3 + 9x4 [Steel]

4x1 + 9x2 + 7x3 + 2x4 [Wood]

Finally, we incorporate the external flow and objective: 4,400lbs of Steel available,6, 000lbs of Wood available,
maximize profit:

Max 12x1 + 20x2 + 18x3 + 40x4 = z [Profit]

s.t. x1 + x2 + 3x3 + 9x4 ≤ 4, 400 [Steel]
4x1 + 9x2 + 7x3 + 2x4 ≤ 6, 000 [Wood]

x1, x2, x3, x4 ≥ 0

2
Linear Programming

Linear program (LP) in astandard form (maximization)

max c1x1 + c2x2 + . . . + cnxn Objective function
subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2
... +

...
...

...
am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0 Sign restrictions







Constraints

Feasible solution(point) P = (p1, p2, . . . , pn) is an assignment of values to thep1, . . . , pn to variablesx1, . . . , xn

that satisfiesall constraints andall sign restrictions.

Feasible region≡ the set of all feasible points.

Optimal solution ≡ a feasible solution with maximum value of the objective function.

2.1 Formulating a linear program

1. Choose decision variables

2. Choose an objective and an objective function – linear function in variables

3. Choose constraints – linear inequalities

4. Choose sign restrictions

Example

You have $100. You can make the following three types of investments:

Investment A. Every dollar invested now yields $0.10 a year from now, and $1.30 three years from now.

Investment B.Every dollar invested now yields $0.20 a year from now and $1.10 two years from now.

Investment C.Every dollar invested a year from now yields $1.50 three years from now.

During each year leftover cash can be placed into money markets which yield 6% a year. The most that can be invested
a single investment (A, B, or C) is $50.

Formulate an LP to maximize the available cash three years from now.

5

6 CHAPTER 2. LINEAR PROGRAMMING

Decision variables:xA, xB, xC, amounts invested into Investments A, B, C, respectively
y0, y1, y2, y3 cash available/invested into money markets now, and in 1,2,3 years.

Max y3

s.t. xA + xB + y0 = 100
0.1xA + 0.2xB − xC + 1.06y0 = y1

1.1xB + 1.06y1 = y2

1.3xA + 1.5xC + 1.06y2 = y3

xA ≤ 50
xB ≤ 50

xC ≤ 50

xA, xB, xC, y0, y1, y2, y3 ≥ 0

Items







Activities
︷ ︸︸ ︷

Inv. A Inv. B Inv. C Markets
Now

Markets
Year 1

Markets
Year 2

External
flow

Now −1 −1 −1 = −100
Year1 0.1 0.2 −1 1.06 −1 = 0
Year2 1.1 1.06 −1 = 0
Year3 1.3 1.5 1.06 maximize

Sign convention:inputs havenegativesign, outputs havepositivesigns.

External in-flow hasnegativesign, external out-flow haspositivesign.

We have in-flow of$100 cash “Now” which means we have−$100 on the right-hand side. No in-flow or out-flow of
any other item.

Inv. A
xA

$1 Now
$0.1 Year1

$1.3 Year3

Markets
Now
y0

$1 Now $1.06 Year1

Inv. B
xB

$1 Now
$0.2 Year1

$1.1 Year2

Markets
Year 1

y1

$1 Year1 $1.06 Year2

Inv. C
xC

$1 Year1 $1.5 Year3
Markets
Year 2

y2

$1 Year2 $1.06 Year3

Max 1.3xA + 1.5xC + 1.06y2

s.t. xA + xB + y0 = 100

0.1xA + 0.2xB − xC + 1.06y0 − y1 = 0

1.1xB + 1.06y1 − y2 = 0

y0, y1, y2 ≥ 0

0 ≤ xA, xB, xC ≤ 50

2.1. FORMULATING A LINEAR PROGRAM 7

Post office problem

Post office requires different numbers of full-time employees on different days. Each full time employee works 5
consecutive days (e.g. an employee may work from Monday to Friday or, say from Wednesday to Sunday). Post office
wants to hire minimum number of employees that meet its dailyrequirements, which are as follows.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

17 13 15 19 14 16 11

Let xi denote the number of employees thatstart working in dayi wherei = 1, ..., 7 and work for 5 consecutive days
from that day. How many workers work on Monday? Those that start on Monday, or Thursday, Friday, Saturday, or
Sunday. Thusx1 + x4 + x5 + x6 + x7 should be at least17.

Then the formulation is thus as follows:

min x1 + x2 + x3 + x4 + x5 + x6 + x7

s.t. x1 + x4 + x5 + x6 + x7 ≥ 17
x1 + x2 + x5 + x6 + x7 ≥ 13
x1 + x2 + x3 + x6 + x7 ≥ 15
x1 + x2 + x3 + x4 + x7 ≥ 19
x1 + x2 + x3 + x4 + x5 ≥ 14

x2 + x3 + x4 + x5 + x6 ≥ 16
x3 + x4 + x5 + x6 + x7 ≥ 11

x1, x2, . . . , x7 ≥ 0

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Total 1 1 1 1 1 1 1 minimize
Monday 1 1 1 1 1 ≥ 17
Tuesday 1 1 1 1 1 ≥ 13
Wednesday 1 1 1 1 1 ≥ 15
Thursday 1 1 1 1 1 ≥ 19
Friday 1 1 1 1 1 ≥ 14
Saturday 1 1 1 1 1 ≥ 16
Sunday 1 1 1 1 1 ≥ 11

(Simple) Linear regression

Given a set of datapoints{(1, 2), (3, 4), (4, 7)}we want to find a line that most closely represents the datapoints. There
are various ways to measure what it means ”closely represent”. We may, for instance, minimize the average distance
(deviation) of the datapoints from the line, or minimize thesum of distances, or the sum of squares of distances, or
minimize the maximum distance of a datapoint from the line. Here the distance can be either Euclidean distance, or
vertical distance, or Manhattan distance (vertical+horizontal), or other.

We choose to minimize the maximum vertical distance of a point from the line. A general equation of a line with finite
slope has formy = ax + c wherea andc are parameters. For a point(p, q), the vertical distance of the point from the
line y = ax + c can be written as|q− ap− c|. Thus we want

Problem: Find constantsa, c such that the largest of the three values|2− a− c|, |4− 3a− c|, |7− 4a− c| is as small
as possible.

min max
{∣
∣2− a− c

∣
∣,
∣
∣4− 3a− c

∣
∣,
∣
∣7− 4a− c

∣
∣

}

We want to formulate it as a linear program. Issues: non-negativity, the absolute value, the min of max.

• the min of max:w ≥ max{i1, i2, . . . , it} if and only if w ≥ i1 andw ≥ i2 and . . . andw ≥ it

8 CHAPTER 2. LINEAR PROGRAMMING

Min w
s.t. w ≥ |2− 1a− c|

w ≥ |4− 3a− c|
w ≥ |7− 4a− c|

• absolute values:w ≥ |i| if and only if w ≥ i andw ≥ −i.

(in other words, the absolute value ofi is at mostw if and only if−w ≤ i ≤ w)

Min w
s.t. w ≥ 2− a− c

w ≥ −2 + a + c
w ≥ 4− 3a− c
w ≥ −4 + 3a + c
w ≥ 7− 4a− c
w ≥ −7 + 4a + c

• unrestricted sign: writex = x+ − x− wherex+, x− ≥ 0 are new variables

Min w
s.t. w ≥ 2− a+ + a− − c+ + c−

w ≥ −2 + a+ − a− + c+ − c−

w ≥ 4− 3a+ + 3a− − c+ + c−

w ≥ −4 + 3a+ − 3a− + c+ − c−

w ≥ 7− 4a+ + 4a− − c+ + c−

w ≥ −7 + 4a+ − 4a− + c+ − c−

wherea+, a−, c+, c−, w ≥ 0

Min w
s.t. w + a+ − a− + c+ − c− ≥ 2

w − a+ + a− − c+ + c− ≥ −2
w + 3a+ − 3a− + c+ − c− ≥ 4
w − 3a+ + 3a− − c+ + c− ≥ −4
w + 4a+ − 4a− + c+ − c− ≥ 7
w − 4a+ + 4a− − c+ + c− ≥ −7

a+, a−, c+, c−, w ≥ 0

Note

The above formulation on the right isstandard form of a minimization LP. We have already seen the standard form of
a maximization problem; this is the same except that we minimize the objective function and the signs of inequalities
switch (this is only done for convenience sake when we get to solving LPs).

2.2 Summary and further tricks

Let us summarize what we have learned so far.

• Linear Program (LP) is an optimization problem where

→ thegoal is to maximize or minimize alinear objective function
→ over a set offeasible solutions– i.e. solution of a set oflinear inequalities

(forming thefeasible region).

• Standard form: all inequalities are≤-inequalities (or all are≥-inequalities)
and all variables are non-negative

→ to get a≤-inequality from a≥-inequality we multiply both sides by−1 and reverse the sign
(this gives us an equivalent problem)

x1 − x2 ≤ 100 ⇐⇒ −x1 + x2 ≥ −100

→ to get inequalities from an equation, we replace it by two identical inequalities, one with≤ and one with≥
x1 − x2 = 100 ⇐⇒ x1 − x2 ≤ 100

x1 − x2 ≥ 100

2.2. SUMMARY AND FURTHER TRICKS 9

→ eachunrestricted variable (urs) is replaced by thedifferenceof two new non-negative variables

. . . + x1 + . . .

x1 urs
⇐⇒ . . . + (x2 − x3) + . . .

x2, x3 ≥ 0

→ anon-positivevariablex1 ≤ 0 is replaced by thenegativeof a new non-negative variablex2

. . . + x1 + . . .

x1 ≤ 0
⇐⇒ . . . + (−x2) + . . .

x2 ≥ 0
→ absolutevalue: we can replaceonly in certain situations

∗ inequalities of type| f | ≤ g where f andg are arbitrary expressions:

replace by two inequalitiesf ≤ g and−g ≤ f

∗ if +| f | appears in theobjective function and we areminimizing this function:

replace+| f | in the objective function by a new variablex1 and add a constraint| f | ≤ x1.

(likewise if−| f | appears when maximizing)

→ min of max: if max{ f1, f2, . . . , ft} in the objective function and we areminimizing , then replace this
expression with a new variablex1 and add constraintsfi ≤ x1 for eachi = 1, . . . , t:

. . . + max{ f1, . . . , ft} + . . . ⇐⇒ . . . + x1 + . . .

x1 urs

f1 ≤ x1

f2 ≤ x1

...

ft ≤ x1

→ unrestricted expressionf can be written as a difference of two non-negative variables

. . . + f + . . . ⇐⇒ . . . + (x2 − x3) + . . .

x2, x3 ≥ 0

Moreover, if we areminimizing , we can use+x2 and+x3 (positive multiples ofx2, x3) in theobjective
function (if maximizing, we can use negative multiples).

In anoptimal solution the meaning of these new variables will be as follows:

∗ if f ≥ 0, thenx2 = f andx3 = 0,
∗ if f < 0, thenx2 = 0 andx3 = − f .

In other words,x2 represents thepositive part of f , andx3 thenegative partof f (can you see why?). Note
that this only guaranteed to hold for an optimal solution (but that will be enough for us).

Exercise.Try to justify for yourself why these restrictions are necessary.

3
Solving linear programs

3.1 Graphical method

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

1. Find the feasible region.

• Plot each constraint as an equation≡ line in the plane

• Feasible points on one side of the line – plug in (0,0) to find out which

20 40 60 80 100

20

40

60

80

100

x2

x1 20 40 60 80 100

20

40

60

80

100

x2

x1

x1 + x2 � 80

Start withx1 ≥ 0 andx2 ≥ 0 addx1 + x2 ≤ 80

10

3.1. GRAPHICAL METHOD 11

20 40 60 80 100

20

40

60

80

100

x2

x1

x1 + x2 � 80

2x1 + x2 � 100

20 40 60 80 100

20

40

60

80

100

x2

x1

x1 � 40

x1 + x2 � 80

2x1 + x2 � 100

feasible
region

add2x1 + x2 ≤ 100 addx1 ≤ 40

A corner (extreme) pointX of the regionR ≡ every line throughX intersectsR in a segment whose one endpoint
is X. Solving a linear program amounts to finding a best corner point by the following theorem.

Theorem 1. If a linear program has anoptimal solution, then it also has anoptimal solution that is acorner point
of the feasible region.

Exercise.Try to find all corner points. Evaluate the objective function 3x1 + 2x2 at those points.

20 60

20

40

60

80

100

x2

x1

feasible
region

c����� points

(40,20)

(0,80)

(20,60)

(0,0)
(40,0)

20 60

20

40

60

80

100

x2

x1

feasible
region

180 = 3*20 + 2*60

160 = 3*40 + 2*20

160 = 3*0 + 2*80

120 =

 = 3*40 + 2*0

3*0 + 2*0 = 0

highest value
(optimum)

Problem: there may be too many corner points to check. There’s a betterway.

Iso-value line≡ in all points on this line the objective function has the samevalue

For our objective3x1 + 2x2 an iso-value line consists of points satisfying3x1 + 2x2 = z wherez is some number.

Graphical Method (main steps):

1. Find the feasible region.

2. Plot an iso-value (isoprofit, isocost) line for some value.

12 CHAPTER 3. SOLVING LINEAR PROGRAMS

3. Slide the line in the direction of increasing value until it only touches the region.

4. Read-off an optimal solution.

20 40 60 80

20

40

60

80

100

x2

x1

z = 3x1 + 2x2 = 0
z = 60 z = 120

z = 180

z = 240

20 40 60

20

40

60

80

100

x2

x1

z = 3x1 + 2x2

Optimal solution is (x1, x2) = (20, 60).

Observe that this point is the intersection of two lines forming the boundary of the feasible region. Recall that lines
we use to construct the feasible region come from inequalities (the points on the line satisfy the particular inequality
with equality).

Binding constraint ≡ constraint satisfied with equality

For solution(20, 60), the binding constraints arex1 + x2 ≤ 80 and2x1 + x2 ≤ 100 because20 + 60 = 80 and
2× 20 + 60 = 100. The constraintx1 ≤ 40 is not binding becausex1 = 20 < 40.

The constraint is binding because changing it (a little) necessarily changes the optimality of the solution. Any change
to the binding constraints either makes the solution not optimal or not feasible.

A constraint that is not binding can be changed (a little) without disturbing the optimality of the solution we found.
Clearly we can changex1 ≤ 40 to x1 ≤ 30 and the solution(20, 60) is still optimal. We shall discuss this more
in-depth when we learn about Sensitivity Analysis.

Finally, note that the above process always yields one of thefollowing cases.

Theorem 2. Every linear program has either

(i) a unique optimal solution, or
(ii) multiple (infinity) optimal solutions, or
(iii) is infeasible(has no feasible solution), or
(iv) is unbounded(no feasible solution is maximal).

3.2. FOURIER-MOTZKIN ELIMINATION (FME) 13

3.2 Fourier-Motzkin Elimination (FME)

A simple (but not yet most efficient) process to solve linear programs. Unlike the Graphical method, this process
applies to arbitrary linear programs, but more efficient methods exist. The FME method

finds a solution to a system of linear inequalities

(much like Gaussian elimination from Linear algebra which finds a solution to a system oflinear equations)

We shall discuss how this is done for≥-inequalities and forminimization LPs. (Similarly it can be stated for≤-
inequalities and maximization LPs.) You can skip to the example below to get a better idea.

First, we need to adapt the method to solving linear programs. We need to incorporate the objective function as part
of the inequalities. Wereplace the objective function by anew variablez and look for a solution to the inequalities
such thatz is smallest possible (explained how later).

0. Objective function c1x1 + c2x2 + . . . + cnxn: add a new constraintz ≥ c1x1 + c2x2 + . . . + cnxn

From this point, we assume that all we have is a system of≥-inequalities with all variables on the left-hand side
and a constant on the right-hand side. (We change≤-inequalities to≥-inequalities by multiplying by−1.) We
proceed similarly as in Gaussian elimination. We try to eliminate variables one by one bypivotting a variable in
all inequalities (not just one). Unlike Gaussian elimination, we are dealingwith inequalities here and so we arenot
allowed to multiply by a negative constant when pivotting. This requires a more complex procedure to eliminatex1.

1. Normalize x1: if +cx1 or−cx1 wherec > 0 appears in an inequality, divide the inequality byc.

After normalizing, this gives us three types of inequalities: those with+x1 (call thempositive inequalities),
those with−x1 (call themnegativeinequalities), and those withoutx1.

2. Eliminate x1: consider each positive and each negative inequality and add them together to create a new in-
equality.

Note that we do this forevery pair of such inequalities; each generates a new inequality without x1. Taking all
these generated inequalities and the inequalities that didnot containx1 in the first place gives us new problem,
one withoutx1. This new problem isequivalent to the original one.

3. Repeatthis process eliminatingx2, x3, . . . , in turn until onlyz remains to be eliminated.

4. Solution: determine the smallest value ofz that satisfies the resulting inequalities.

5. Back-substitution: substitute the values in the reverse order of elimination toproduce values of all eliminated
variables.

In this process, when choice is possible for some variable, we can choose arbitrarily; any choice leads to a
correct solution (for more, see the example below how this isdone).

Example

min 2x1 + 2x2 + 3x3

s.t. x1 + x2 + x3 ≤ 2
2x1 + x2 ≤ 3
2x1 + x2 + 3x3 ≥ 3

x1, x2, x3 ≥ 0

1. make the objective function into a constraintz ≥
objective function

︷ ︸︸ ︷

2x1 + 2x2 + 3x3 and change the objective tomin z

14 CHAPTER 3. SOLVING LINEAR PROGRAMS

min z
s.t. 2x1 + 2x2 + 3x3 − z ≤ 0

x1 + x2 + x3 ≤ 2
2x1 + x2 ≤ 3
2x1 + x2 + 3x3 ≥ 3

x1, x2, x3 ≥ 0

2. change all inequalities to≥

−2x1 − 2x2 − 3x3 + z ≥ 0
−x1 − x2 − x3 ≥ −2
−2x1 − x2 ≥ −3

2x1 + x2 + 3x3 ≥ 3
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0

3. Eliminatex1

a) normalize = make the coefficients ofx1

one of+1,−1, or 0

−x1 − x2 − 3
2 x3 + 1

2 z ≥ 0

−x1 − x2 − x3 ≥ −2

−x1 − 1
2 x2 ≥ − 3

2

x1 + 1
2 x2 + 3

2 x3 ≥ 3
2

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0

b) add inequalities = add each inequality with
+x1 to every inequality with−x1;

then remove all inequalities containingx1

− 1
2 x2 + 1

2 z ≥ 3
2

− 1
2 x2 + 1

2 x3 ≥ − 1
2

3
2 x3 ≥ 0

−x2 − 3
2 x3 + 1

2 z ≥ 0

−x2 − x3 ≥ −2

− 1
2 x2 ≥ − 3

2

x2 ≥ 0
x3 ≥ 0

Eliminatex2

−x2 + z ≥ 3

−x2 + x3 ≥ −1

−x2 − 3
2 x3 + 1

2 z ≥ 0

−x2 − x3 ≥ −2

−x2 ≥ −3

x2 ≥ 0
3
2 x3 ≥ 0

x3 ≥ 0

z ≥ 3

x3 ≥ −1

− 3
2 x3 + 1

2 z ≥ 0

−x3 ≥ −2

0 ≥ −3
3
2 x3 ≥ 0

x3 ≥ 0

Eliminatex3

−x3 + 1
3 z ≥ 0

−x3 ≥ −2

x3 ≥ −1

x3 ≥ 0
z ≥ 3

0 ≥ −3

1
3 z ≥ −1

0 ≥ −3
1
3 z ≥ 0

0 ≥ −2

z ≥ 3

0 ≥ −3

3.2. FOURIER-MOTZKIN ELIMINATION (FME) 15

Final list of inequalities

z ≥ −3

z ≥ 0

z ≥ 3

0 ≥ −3

0 ≥ −2

4. Choose smallestz that satisfies the inequalities,z = 3

5. Back-substitution

−x3 + 1
3 × 3 ≥ 0

−x3 ≥ −2

x3 ≥ −1

x3 ≥ 0

x3 ≤ 1

x3 ≤ 2

x3 ≥ −1

x3 ≥ 0

0 ≤ x3 ≤ 1

Choose ANY value that
satisfies the inequalities

x3 = 1
2

−x2 + 3 ≥ 3

−x2 + 1
2 ≥ −1

−x2 − 3
2 × 1

2 + 1
2 × 3 ≥ 0

−x2 − 1
2 ≥ −2

−x2 ≥ −3

x2 ≥ 0

x2 ≤ 0

x2 ≤ 3
2

x2 ≤ 3
4

x2 ≤ 3
2

x2 ≤ 3

x2 ≥ 0

0 ≤ x2 ≤ 0

Choose ANY value that
satisfies the inequalities (this

time only one)

x2 = 0

−x1 − 0 − 3
2 × 1

2 + 1
2 × 3 ≥ 0

−x1 − 0 − 1
2 ≥ −2

−x1 − 1
2 × 0 ≥ − 3

2

x1 + 1
2 × 0 + 3

2 × 1
2 ≥ 3

2

x1 ≥ 0

x1 ≤ 3
4

x1 ≤ 3
2

x1 ≤ 3
2

x1 ≥ 3
4

x1 ≥ 0

3
4 ≤ x1 ≤ 3

4

Choose ANY value that
satisfies the inequalities

(again only one)

x1 = 3
4

Solutionx1 = 3
4 , x2 = 0, x3 = 1

2 of valuez = 3

Notes:

• if at any point an inequality0x1 + 0x2 + 0x3 + 0z ≥ d is produced whered > 0
−→ no solution (infeasible LP)

• if the final system does not contain an inequalityz ≥ d
−→ no optimum (unbounded LP)

4
Simplex method

The process consists of two steps

1. Find afeasiblesolution (or determine thatnone exists).

2. Improve the feasible solution to anoptimal solution.

Feasible ?
Feasible
solution

Is optimal? Optimal
solution

LP is
infeasible

NO

YES

NO
Improve the solution

YES

In many cases the first step is easy (for free; more on that later).

4.1 Canonical form

Linear program (LP) is in acanonical form if

• all constraints areequations
• all variables arenon-negative

max c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
... +

...
...

...
am1x1 + am2x2 + . . . + amnxn = bm

x1, x2, . . . , xn ≥ 0

Slack variables

To change a inequality to an equation, we add anew non-negativevariable called aslackvariable.

x1 + x2 ≤ 80 −→ x1 + x2 + s1 = 80

16

4.2. SIMPLEX METHOD BY EXAMPLE 17

x1 + x2 ≥ 80 −→ x1 + x2 − e1 = 80

Notes:

• the variablee1 is sometimes called anexcessvariable
• we can usexi for slack variables (wherei is a new index)

max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

−→

max 3x1 + 2x2

x1 + x2 + x3 = 80
2x1 + x2 + x4 = 100

x1 + x5 = 40

x1, x2, x3, x4, x5 ≥ 0

4.2 Simplex method by example

Consider the toyshop example from earlier lectures. Convert to equalities by addingslack variables

max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

−→

max 3x1 + 2x2

x1 + x2 + x3 = 80
2x1 + x2 + x4 = 100

x1 + x5 = 40

x1, x2, x3, x4, x5 ≥ 0

20 60

20

40

60

80

100

x2

x1

feasible
region

corner points

(40,20)

(0,80)

(20,60)

(0,0)
(40,0)

20 60

20

40

60

80

100

x2

x1

x1

x2

x5

~�3

~�4

x3 = x4 = 0

x1 = x3 = 0

x4 = x5 = 0

x2 = x5 = 0
x1 = x2 = 0

b�	
�
feasible
solu�

�	

Starting feasible solution

Set variablesx1, x2 to zero and set slack variables to the values on the right-hand side.

→ yields a feasible solutionx1 = x2 = 0, x3 = 80, x4 = 100, x5 = 40

Recall that the solution is feasible because all variables are non-negativeandsatisfyall equations.

(we get a feasible solution right away because the right-hand side is non-negative; this may not always work)

Note somethinginteresting: in this feasible solution two variables (namelyx1, x2) are zero. Such a solution is called
a basic solutionof this problem, because the value of at least two variables is zero.

In a problem withn variables andm constraints, a solution where at least(n−m) variables are zero is abasic
solution.

A basic solution that is also feasible is called abasic feasible solution(BFS).

The importance of basic solutions is revealed by the following observation.

18 CHAPTER 4. SIMPLEX METHOD

Basic solutionsare precisely thecorner points of thefeasible region.

Recall that we have discussed that to find an optimal solutionto an LP, it suffices to find abest solutionamong all
corner points. The above tells us how to compute them – they are thebasic feasible solutions.

A variable in abasic solutionis called anon-basic variableif it is chosen to be zero.
Otherwise, the variable isbasic.

The basic variables we collectively call abasis.

Dictionary

To conveniently deal with basic solutions, we use the so-calleddictionary . A dictionary lists values of basic variables
as a function of non-basic variables. The correspondence isobtained by expressing the basic variables from the initial
set of equations. (We shall come back to this later; for now, have a look below.)

Express the slack variables from the individual equations.

max 3x1 + 2x2

x1 + x2 + x3 = 80
2x1 + x2 + x4 = 100

x1 + x5 = 40

x1, x2, x3, x4, x5 ≥ 0

−→
x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

This is called adictionary .

• x1, x2 independent (non-basic) variables
• x3, x4, x5 dependent (basic) variables
• {x3, x4, x5} is abasis

setx1 = x2 = 0→ the corresponding (feasible) solution isx3 = 80, x4 = 100, x5 = 40 with valuez = 0

Improving the solution

Try to increasex1 from its current value0 in hopes of improving the value ofz

try x1 = 20, x2 = 0 andsubstitute into the dictionary to obtain the values ofx3, x4, x5 andz

−→ x3 = 60, x4 = 60, x5 = 20 with valuez = 60→ feasible

try againx1 = 40, x2 = 0 −→ x3 = 40, x4 = 20, x5 = 0 with valuez = 120→ feasible

now try x1 = 50, x2 = 0 −→ x3 = 30, x4 = 0, x5 = −10→ not feasible

How much we can increasex1 before a (dependent) variable becomes negative?

If x1 = t andx2 = 0, then the solution is feasible if

x3 = 80 − t − 0 ≥ 0
x4 = 100 − 2t − 0 ≥ 0
x5 = 40 − t ≥ 0

=⇒
t ≤ 80
t ≤ 50
t ≤ 40






=⇒ t ≤ 40

Maximal value isx1 = 40 at which point the variablex5 becomes zero

x1 is incomingvariable andx5 is outgoingvariable

(we say thatx1 entersthe dictionary/basis, andx5 leavesthe dictionary/basis)

Ratio test

The above analysis can be streamlined into the following simple “ratio” test.

4.2. SIMPLEX METHOD BY EXAMPLE 19

x3 :
80

1
= 80

x4 :
100

2
= 50

x5 :
40

1
= 40

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

ratio for x4:

100

2
= 50

(watch-out: we only consider this ratio because the coefficient ofx1 is
negative(−2). . . more on that in the later steps)

Minimum achieved withx5 =⇒ outgoing variable

Expressx1 from the equation forx5

x5 = 40 − x1 −→ x1 = 40 − x5

Substitutex1 to all other equations−→ new feasible dictionary

x1 = (40 − x5)
x3 = 80 − (40 − x5) − x2

x4 = 100 − 2(40 − x5) − x2

z = 0 + 3(40 − x5) + 2x2

−→
x1 = 40 − x5

x3 = 40 − x2 + x5

x4 = 20 − x2 + 2x5

z = 120 + 2x2 − 3x5

now x2, x5 are independent variables andx1, x3, x4 are dependent

→ {x1, x3, x4} is a basis

we repeat: we increasex2 → incoming variable, ratio test:

x1 : does not containx2 → no constraint

x2 :
40

1
= 40

x4 :
20

1
= 20

minimum achieved forx4→ outgoing variable

x4 = 20 − x2 + 2x5 −→ x2 = 20 − x4 + 2x5

x1 = 40 − x5

x2 = (20 − x4 + 2x5)
x3 = 40 − (20 − x4 + 2x5) + x5

z = 120 + 2(20 − x4 + 2x5) − 3x5

−→
x1 = 40 − x5

x2 = 20 − x4 + 2x5

x3 = 20 + x4 − x5

z = 160 − 2x4 + x5

x5 incoming variable, ratio test:

x1 :
40

1
= 40

x2 : positive coefficient→ no constraint

x3 :
20

1
= 20

minimum achieved forx3→ outgoing variable

x3 = 20 + x4 − x5 −→ x5 = 20 + x4 − x3

x1 = 40 − (20 + x4 − x3)
x2 = 20 − x4 + 2(20 + x4 − x3)
x5 = (20 + x4 − x3)
z = 160 − 2x4 + (20 + x4 − x3)

−→
x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

no more improvement possible−→ optimal solution

x1 = 20, x2 = 60, x3 = 0, x4 = 0, x5 = 20 of valuez = 180

Why? settingx3, x4 to any non-zero values results in a smaller value ofz

20 CHAPTER 4. SIMPLEX METHOD

Each dictionary isequivalent to the original system (the two have the same set of solutions)

Simplex algorithm

Preparation: find a starting feasible solution/dictionary

1. Convert to the canonical form (constraints are equalities) by adding slack variablesxn+1, . . . , xn+m

2. Construct a starting dictionary - express slack variables and objective functionz

3. If the resulting dictionary is feasible, then we are done with preparation

If not, try to find a feasible dictionary using thePhase I. method(next lecture).

Simplex step (maximization LP): try to improve the solution

1. (Optimality test) : If no variable appears with apositivecoefficient in the equation forz

→ STOP, current solution isoptimal

• set non-basic variables to zero
• read off the values of the basic variables and the objective functionz

→ Hint: the values are the constant terms in respective equations
• report this (optimal) solution

2. Else pick a variablexi having positive coefficient in the equation forz

xi ≡ incomingvariable

3. Ratio test: in the dictionary, find an equation for a variable xj in which

• xi appears with a negative coefficient−a

• the ratio
b

a
is smallest possible

(whereb is the constant term in the equation forxj)

4. If no such suchxj exists→ stop, no optimal solution, report thatLP is unbounded

5. Elsexj ≡ outgoing variable→ construct a new dictionary bypivoting:

• expressxi from the equation forxj,
• add this as a new equation,
• remove the equation forxj,
• substitutexi to all other equations (including the one forz)

6. Repeat from 1.

Questions:

• which variable to choose as incoming, which as outgoing

• is this guaranteed to terminate in a finite number of steps

• how to convert other LP formulations to the standard form

• how to find a starting dictionary

• how do we find alternative optimal solutions

4.3. TWO PHASE SIMPLEX METHOD 21

4.3 Two phase Simplex method

canonical form = equations, non-negative variables

n = number of variables

m = number of equations

basic solution= at least(n−m) variables are zero

basic solutions = dictionaries

basic feasible solutions = corner/extreme points = feasible dictionaries

Feasible ?
Basic

Feasible
Solution

Is optimal? Optimal
solution

LP is Infeasible

NO

YES

NO
Improve the solution

LP is Unbounded

YES

PHASE I. PHASE II.

max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

max3x1 + 2x2

x1 + x2 + x3 = 80
2x1 + x2 + x4 = 100

x1 + x5 = 40

x1, x2, x3, x4, x5 ≥ 0

20 60

20

40

60

80

100

x2

x1

x1

x2

x�

��3

��4

x3 = x4 = 0

�����
�s����s��

x3 = x� = 0

��i������e

feasible

Feasibledictionary:x3 = x4 = 0

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

Infeasibledictionary:x3 = x5 = 0

x1 = 40 − x5

x2 = 40 − x3 + x5

x4 = −20 + x3 + x5

z = 200 − 2x3 − x5

(it is infeasible sincex4 = −20)

4.4 Special cases

Alternative solutions

max x1 + 1
2 x2

s.t. 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 3

x1, x2 ≥ 0

x3 = 4 − 2x1 − x2

x4 = 3 − x1 − 2x2

z = x1 + 1
2 x2

Pivoting: x1 enters, ratio test:x3 :
4

2
= 2, x4 :

3

1
= 3 −→ thusx3 leaves:x1 = 2− 1

2 x2 − 1
2 x3

22 CHAPTER 4. SIMPLEX METHOD

x1 = 2 − 1
2 x2 − 1

2 x3

x4 = 1 − 3
2 x2 + 1

2 x3

z = 2 + 0x2 − 1
2 x3

1 3

1

2

3

4

x12

z = x1 +
1
2

x2

x2

Optimal solution (all coefficients non-positive)x1 = 2, x2 = 0, x3 = 0, x4 = 1, z = 2

Note thatx2 appears with zero coeeficient in the expression forz

→ increasingx2 is possible, but does not affect the value ofz

we pivot again:x2 enters, ratio testx1 :
2

1/2
= 4, x4 :

1

3/2
= 2/3 −→ thusx4 leaves

x1 = 5
3 − 2

3 x3 + 1
3 x4

x2 = 2
3 + 1

3 x3 − 2
3 x4

z = 2 − 1
2 x3 + 0x4

Again an optimal solutionx1 = 5
3 , x2 = 2

3 , x3 = 0, x4 = 0, z = 2→ same value

What if we pivot again (onx4) ?

Unbounded LP

max 2x1 + x2

s.t. −x1 + x2 ≤ 1
x1 − 2x2 ≤ 2

x1, x2 ≥ 0

x3 = 1 + x1 − x2

x4 = 2 − x1 + 2x2

z = 2x1 + x2

Pivoting: x1 enters,x4 leaves (the only choice),x1 = 2 + 2x2 − x4

1 3

1

2

3

4

x12

z = 2x1 + x2
x2

0

direction of
 unboundedness

x1 = 2 + 2x2 − x4

x3 = 3 + x2 − x4

z = 4 + 5x2 − 2x4

for x2 = x4 = 0, we havex1 = 2, x3 = 3, z = 4

−→ a feasible solution

What if we now increasex2? no positive value ofx2 makes one ofx1, x3 negative

→ we can makex2 arbitrarily large and thus makez arbitrarily large−→ unboundedLP

direction of unboundedness: setx2 = t, x4 = 0 −→ x1 = 2 + 2t, x3 = 3 + t, z = 4 + 5t

for increasingt −→ gives a sequence of feasible solution of increasing value

4.5. PHASE I. 23

Degeneracy

x4 = 1 − 2x3

x5 = 3 − 2x1 + 4x2 − 6x3

x6 = 2 + x1 − 3x2 − 4x3

z = 2x1 − x2 + 8x3

Pivotting: x3 enters, ratio test:x4 :
1

2
= 1/2, x5 :

3

6
= 1/2, x6 :

2

4
= 1/2 −→ any ofx4, x5, x6 can be chosen

→ we choosex4 to leave,x3 = 1
2 − 1

2 x4

x3 = 1
2 − 1

2 x4

x5 = − 2x1 + 4x2 + 3x4

x6 = x1 − 3x2 + 2x4

z = 4 + 2x1 − x2 − 4x4

settingx1 = x2 = x4 = 0 yieldsx3 = 1
2 , x5 = 0, x6 = 0

now x1 enters, andx5 leaves (the only choice),x1 = 2x2 − 3
2 x4 − 1

2 x5

x1 = 2x2 + 3
2 x4 − 1

2 x5

x3 = 1
2 − 1

2 x4

x6 = − x2 + 7
2 x4 − 1

2 x5

z = 4 + 3x2 − x4 − x5

settingx2 = x4 = x5 = 0 yieldsx1 = 0, x3 = 1
2 , x6 = 0

−→ same solutionas before

if some basic variable is zero, then the basic solution isdegenerate

This happens, for instance, if there is more than one choice for an outgoing variable (the ones not chosen will be zero
in the subsequent dictionary)

Problem: several dictionaries may correspond to the same (degenerate) solution

The simplex rule may cycle, it is possible to go back to the same dictionary if we are not careful enough when choosing
the incoming/outgoing variables

Bland’s rule From possible options, choose an incoming (outgoing) variable xk with smallest subscriptk.

Simplex method using Bland’s rule is guaranteed to terminate in a finite number of steps.

Alternative: lexicographic rule – choose as outgoing variable one whose row is lexicographically smallest (when
divided by the constant term) – the coefficients in the objective function are guaranteed to strictly increase lexico-
graphically

4.5 Phase I.

max x1 − x2 + x3

s.t. 2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0

x4 = 4 − 2x1 + x2 − 2x3

x5 = −5 − 2x1 + 3x2 − x3

x6 = −1 + x1 − x2 + 2x3

z = x1 − x2 + x3

If we choose the starting basis to be theslack variables, then the resulting dictionary isnot feasible:

→ we letx1 = x2 = x3 = 0, we getx4 = 4, x5 = −5, x6 = −1 −→ not feasiblebecausex5 < 0

We need to find a starting feasible dictionary for Phase II. Todo this, wesolveadifferentproblem.

Intuition: we want to get a starting feasible solution where all variablesx1, x2, x3 are zero.

24 CHAPTER 4. SIMPLEX METHOD

Option 1

Add newartificial variables to each inequality as follows:

x1 + x2 ≤ − 100 −→ x1 + x2 − a1 ≤ − 100

x1 + x2 ≥ 100 −→ x1 + x2 + a1 ≥ 100

x1 + x2 = 100 −→ x1 + x2 + a1 = 100

x1 + x2 = − 100 −→ x1 + x2 − a1 = − 100

x1 + x2 ≤ 100

x1 + x2 ≥ − 100

x1 + x2 = 0







−→ no change

New objective function: minimize thesum of all artificial variablesa1 + a2 + . . . + am

Observethat setting all variablesxi to be 0 allows us to choose non-negative values for the artificial variables
(a1 = 100 in the above) to obtain astarting feasible solutionfor thisnew problem.

max x1 − x2 + x3

s.t. 2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1, x2, x3 ≥ 0

min a2 + a3

s.t. 2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 − a2 ≤ −5
−x1 + x2 − 2x3 − a3 ≤ −1

x1, x2, x3, a2, a3 ≥ 0

Notice that if we now setx1 = x2 = x3 = 0 anda2 = 5 anda3 = 1, this satisfies all inequalities (isfeasible).
After adding the slack variables, we produce the corresponding feasible dictionary as follows. Since we want the
maximization form , we also re write the objective function asmax w = −a2 − a3. Therefore

maxw = − a2 − a3

s.t. 2x1 − x2 + 2x3 + x4 = 4
2x1 − 3x2 + x3 − a2 + x5 = −5
−x1 + x2 − 2x3 − a3 + x6 = −1

x1, x2, x3, a2, a3, x4, x5, x6 ≥ 0

If the optimal solution to this problem hasnegativevaluew, then the initial LP isInfeasible.
Otherwise, we produce astarting feasible dictionary for Phase II from the optimal dictionary of Phase I.

To get a starting (Phase I.) feasible dictionary, we take as abasisall artificial variables (a2, a3) and add to thatslack
variablesof equations that do not have artificial variables (1st equation, addx4).

x4 = 4 − 2x1 + x2 − 2x3

a2 = 5 + 2x1 − 3x2 + x3 + x5

a3 = 1 − x1 + x2 − 2x3 + x6

The final step is the objective functionw = −a2 − a3 which we have to write in terms ofnon-basicvariables (so far
it is not since we chosea2 anda3 to be basic). We substitute from the above equations:

w = − a2 − a3 = −
a2

︷ ︸︸ ︷

(5 + 2x1 − 3x2 + x3 + x5) −
a3

︷ ︸︸ ︷

(1− x1 + x2 − 2x3 + x6) = − 6− x1 + 2x2 + x3 −
x5 − x6

The resulting starting feasible dictionary it then as follows:

x4 = 4 − 2x1 + x2 − 2x3

a2 = 5 + 2x1 − 3x2 + x3 + x5

a3 = 1 − x1 + x2 − 2x3 + x6

w = −6 − x1 + 2x2 + x3 − x5 − x6

4.5. PHASE I. 25

Option 2

(for ≤ inequalities): Introduceonenew artificial variablex0 and a new objectivew = −x0

max −x0

s.t. 2x1 − x2 + 2x3 − x0 ≤ 4
2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1

x0, x1, x2, x3 ≥ 0

max − x0

s.t. 2x1 − x2 + 2x3 − x0 + x4 = 4
2x1 − 3x2 + x3 − x0 + x5 = −5
−x1 + x2 − 2x3 − x0 + x6 = −1

x0, x1, x2, x3, x4, x5, x6 ≥ 0

It is easy to get a starting feasible solution for this problem – a starting feasible basis is as follows:

• take all slack variables (x4, x5, x6)
• consider the inequality whose right-hand side is most negative (in this case 2nd inequality)
• this inequality has an associated slack variable (x5), remove this variable from our set→ {x4, x6}
• addx0 in place of the removed variable→ {x0, x4, x6}

This is guaranteed to be a feasible basis (in this new problem).

x0 = 5 + 2x1 − 3x2 + x3 + x5

x4 = 9 − 2x2 − x3 + x5

x6 = 4 + 3x1 − 4x2 + 3x3 + x5

w = −5 − 2x1 + 3x2 − x3 − x5

Example

Let us solve the above problem.

x2 enters, ratio test:x0 :
5

3
, x4 :

9

2
, x6 :

4

4
= 1→ thusx6 leaves,x2 = 1 + 3

4 x1 +
3
4 x3 +

1
4 x5 − 1

4 x6

x0 = 2 − 1

4
x1 −

5

4
x3 +

1

4
x5 +

3

4
x6

x2 = 1 +
3

4
x1 +

3

4
x3 +

1

4
x5 −

1

4
x6

x4 = 7 − 3

2
x1 −

5

2
x3 +

1

2
x5 +

1

2
x6

w = −2 +
1

4
x1 +

5

4
x3 −

1

4
x5 −

3

4
x6

letting x1 = x3 = x5 = x6 = 0 yieldsx0 = 2, x2 = 1, x4 = 7 −→ feasible solution of valuew = −2.

now x3 enters, ratio test:x0 :
2

5/4
=

8

5
, x4 :

7

5/2
=

14

5
→ thusx0 leaves,x3 = 8

5 − 1
5 x1 +

1
5 x5 +

3
5 x6 − 4

5 x0.

x2 =
11

5
+

3

5
x1 +

2

5
x5 +

1

5
x6 −

3

5
x0

x3 =
8

5
− 1

5
x1 +

1

5
x5 +

3

5
x6 −

4

5
x0

x4 = 3 − x1 − x6 + 2x0

w = − x0

Feasible solutionx0 = x1 = x5 = x6 = 0, x2 = 11
5 , x3 = 8

5 , x4 = 3 of valuew = 0

Sincex0 = 0, the solution is also feasible in the original problem.

Now drop the variablex0 and remove the auxiliary objectivew

26 CHAPTER 4. SIMPLEX METHOD

x2 =
11

5
+

3

5
x1 +

2

5
x5 +

1

5
x6

x3 =
8

5
− 1

5
x1 +

1

5
x5 +

3

5
x6

x4 = 3 − x1 − x6

Finally, introduce the original objectivez = x1 − x2 + x3

Note thatx2 andx3 appear inz but are not non-basic variables of the dictionary

→ we must substitute them using the dictionary

z = x1 − x2 + x3 = x1 − (

x2
︷ ︸︸ ︷
11
5 + 3

5 x1 +
2
5 x5 +

1
5 x6) + (

x3
︷ ︸︸ ︷
8
5 − 1

5 x1 +
1
5 x5 +

3
5 x6) = − 3

5 + 1
5 x1 − 1

5 x5 +
2
5 x6

Thus the resulting starting feasible dictionary for the original problem is as follows:

x2 =
11

5
+

3

5
x1 +

2

5
x5 +

1

5
x6

x3 =
8

5
− 1

5
x1 +

1

5
x5 +

3

5
x6

x4 = 3 − x1 − x6

z = −3

5
+

1

5
x1 −

1

5
x5 +

2

5
x6

5
Linear Algebra Review

scalar= a number , could bereal like π = 3.14..., rational (fraction) like 3
4 , integer (whole) like5 or−6

(scalars “change scale” in proportion to their value)

vector = a sequence of numbers, for examplex = (3, 1, 0, 2)

sometimes we writex =
[

3 1 0 2
]

and say it is arow vector,

or we writex =







3
1
0
2







and say it is acolumn vector

multiplying a vector by a scalar (“scaling”)

x = (x1, x2, . . . , xn) a is a scalar a · x = (ax1, ax2, . . . , axn)

For example ifx = (3, 1, 0, 2), then5 · x = (5 · 3, 5 · 1, 5 · 0, 5 · 2) = (15, 5, 0, 10)

adding vectors

x = (x1, x2, . . . , xn) y = (y1, y2, . . . , yn) x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

For example ifx = (3, 1, 0, 2) andy = (0,−1, 2, 1), thenx + y = (3 + 0, 1 + (−1), 0 + 2, 2 + 1) = (3, 0, 2, 3)

1 2 3 4 � 6

1

2

3

4

�

x=��� !

-" -� -

z=�-��#!

27

28 CHAPTER 5. LINEAR ALGEBRA REVIEW

multiplying vectors = scalar product (“dot” product) of vectors

x = (x1, x2, . . . , xn) y = (y1, y2, . . . , yn) x · y = x1y1 + x2y2 + . . . + xnyn

For example ifx = (3, 1, 0, 2) andy = (0,−1, 2, 1), thenx · y = 3 · 0 + 1 · (−1) + 0 · 2 + 2 · 1 = 1

scalar product = corresponds to theanglebetween the vectors

(more precisely, scalar product isproportional to thecosineof the angle — for instance, the scalar product
equalszero if and only if the two vector areorthogonal (perpenticular) to each other — the angle between
them is90◦)

linear combination of vectorsx1, x2, . . . ,xm is

a1x1 + a2x2 + . . . + amxm

wherea1, a2, . . . , am are numbers (scalars). If eachai is between 0 and 1, and ifa1 + a2 + · · ·+ am = 1, then this is
called aconvex combination.

For example, if x = (3, 1, 0, 2) and y = (0,−1, 2, 1), then 0.2x + 0.8y = (0.6, 0.2, 0, 0.4) +
(0,−0.8, 1.6, 0.8) = (0.6,−0.6, 1.6, 1.2) is a linear combination ofx andy. Moreover, it is a convex combi-
nation, since the coefficients are 0.2 and 0.8 (both between 0and 1) and0.2 + 0.8 = 1.

1 2 3

1

2

3

x

y

z

x y

1 2

1

2

x

y

x y z

x y z

convex set= is a set of vectors such that whenever we take a convex combination of vectors from this set, then this
convex combination also belongs to the set

extreme pointof a convex set = cannot be written down as a convex combination of other vectors

(every convex set is the set of all convex combininations (convex hull) of its extreme points)

matrix = 2-dimensional array of numbers, for exampleA =







1 0 3 1
3 2 4 0
2 3 0 1
0 4 1 2







m× n matrix hasm rows andn columns, entries of matrixA areaij wherei is row andj is column

A =








a11 a12 . . . a1n

a21 a22 a2n
...

. . .
am1 am2 . . . amn








[

ai1 ai2 · · · ain

]

︸ ︷︷ ︸

i-th row ofA








a1j

a2j
...

amj














j-th column ofA

multiplying by a scalar

matrix A with entriesaij, thenB = k ·A is a matrixB with entriesbij = k · aij

2 ·







1 0 3 1
3 2 4 0
2 3 0 1
0 4 1 2






=







2 0 6 2
6 4 8 0
4 6 0 2
0 8 2 4







5.1. SYSTEMS OF LINEAR EQUATIONS 29

adding matricesof the same sizem× n

addingA with entriesaij to matrixB with entriesbij is a matrixC with entriescij = aij + bij






1 0 3 1
3 2 4 0
2 3 0 1
0 4 1 2






+







3 1 4 3
2 0 1 3
0 2 1 4
3 0 3 4






=







4 1 7 4
5 2 5 3
2 5 1 5
3 4 4 6







multiplying matrices : matrix A of sizem× n multiplied by matrixB of sizen× k results in a matrix

C = A · B of sizem× k with entriescij wherecij = bj1a1i + bj2a2i + . . . + bjnani

cij is thescalar product of i-th row ofA with j-th column ofB







1 0 3 1
3 2 4 0
2 3 0 1
0 4 1 2






·







3 1 4 3
2 0 1 3
0 2 1 4
3 0 3 4






=







6 7 10 19
13 11 18 31
15 2 14 19
14 2 11 24







(2, 3, 0, 1) · (1, 0, 2, 0) = 2

Note thatA · B is not the same asB ·A
→ except for this, matrix addition and multiplication obey exactly the same laws as numbers

→ from now onvector with m entries is to be treated as am× 1 matrix (column)

→ for all practical intents and purposes, we can deal with matrices and vectors just like we deal with numbers

multriplying matrix by avector = just like multiplying two matrices






1 0 3 1
3 2 4 0
2 3 0 1
0 4 1 2






·







1
0
2
0






=







7
11
2
2







transpose of a matrix: rotate anm× n matrix A along its main diagonal, the resultingn×m matrix AT

A =





1 0 3 1
3 2 4 0
2 3 0 1



 AT =







1 3 2
0 2 3
3 4 0
1 0 1







x =







1
0
3
1







xT =
[

1 0 3 1
]

Note that(AT)T = A and(A · B)T = BT ·AT

5.1 Systems of linear equations

A system of linear equations has the following form

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

. . .
...

am1x1 + am2x2 + . . . + amnxn = bm

Using the matrix notation we can simply write it asAx = b where

A =








a11 a12 . . . a1n

a21 a22 a2n
...

. . .
am1 am2 . . . amn








x =








x1

x2
...

xn








b =








b1

b2
...

bm








Basisof solutions to the systemAx = b

30 CHAPTER 5. LINEAR ALGEBRA REVIEW





1 0 3 1
3 2 4 0
2 3 0 1



 ·







x1

x2

x3

x4






=





1
3
0





Let us multiply (from the left) both sides of the equation by this matrix:





−4 3 −2
8/3 −2 5/3
5/3 −1 2/3









−4 3 −2
8/3 −2 5/3
5/3 −1 2/3



 ·





1 0 3 1
3 2 4 0
2 3 0 1





︸ ︷︷ ︸

·







x1

x2

x3

x4






=





−4 3 −2
8/3 −2 5/3
5/3 −1 2/3



 ·





1
3
0





︸ ︷︷ ︸





1 0 0 −6
0 1 0 13/3
0 0 1 7/3



 ·







x1

x2

x3

x4






=





5
−10/3
−4/3





This operation does not change the solutions to this system (if we multiply with a non-singular matrix)

We can expand it back to the system of linear equations

x1 − 6x4 = 5

x2 + 13
3 x4 = − 10

3

x3 + 7
3 x4 = − 4

3

→→

x1 = 5 + 6x4

x2 = − 10
3 − 13

3 x4

x3 = − 4
3 − 7

3 x4

The system on the right is in adictionary form.

We can read-off a solution by settingx4 to some number and calculating the values ofx1, x2, x3 from the equations.
In particular, we can setx4 = 0 in which casex1 = 5, x2 = − 10

3 , andx3 = − 4
3 .

How did we choose the matrix to multiply? We chose theinversematrix of the first three columns.

This is so that the first three columns will be turned to theidentity matrix I =





1 0 0
0 1 0
0 0 1





Let us writeB for the matrix of first three columns:B =





1 0 3
3 2 4
2 3 0





inverse matrix of a matrixB is a matrixB−1 such thatB−1 · B = I

(the inverse matrix may not always exist – we shall ignore this issue here)

How do we obtain an inverse matrix?we perform elementary row operations on the following matrix




1 0 3 1 0 0
3 2 4 0 1 0
2 3 0 0 0 1





︸ ︷︷ ︸

B

︸ ︷︷ ︸

I

elementary row operations

• multiply a row by a non-zero number
• add a row to another row
• exchange two rows

We callB thebasis matrix.

Let us try a different basis. Choose the 2nd, 3rd, and 4th columns ofA corresponding to variablesx2, x3, x4. (With a
slight abuse of notation, we say that{x2, x3, x4} is ourbasis, andx2, x3, x4 arebasic variables.)

5.2. SUMMARY 31

B =





0 3 1
2 4 0
3 0 1



 attach the identity matrix:





0 3 1 1 0 0
2 4 0 0 1 0
3 0 1 0 0 1





elementary row operations: multiply the 3rd row by−2/3 then add to the 2nd row





0 3 1 1 0 0

2 4 0 0 1 0

−2 0 − 2
3 0 0 − 2

3











0 3 1 1 0 0

0 4 − 2
3 0 1 − 2

3

−2 0 − 2
3 0 0 − 2

3






multiply the 1st row by−4/3 and then add to the 2nd row






0 −4 − 4
3 − 4

3 0 0

0 4 − 2
3 0 1 − 2

3

−2 0 − 2
3 0 0 − 2

3













0 −4 − 4
3 − 4

3 0 0

0 0 −2 − 4
3 1 − 2

3

−2 0 − 2
3 0 0 − 2

3







multiply the 1st, 2nd, 3rd row by−1/4, 1/6,−1/2 respectively; then add 2nd row to 1st and 3rd row






0 1 1
3

1
3 0 0

0 0 − 1
3 − 2

9
1
6 − 1

9

1 0 1
3 0 0 1

3













0 1 0 1
9

1
6 − 1

9

0 0 − 1
3 − 2

9
1
6 − 1

9

1 0 0 − 2
9

1
6

2
9







multiply the 2nd row by−1/2 and swap the order of rows to get the identity matrix on the left







0 1 0 1
9

1
6 − 1

9

0 0 1 2
3 − 1

2
1
3

1 0 0 − 2
9

1
6

2
9













1 0 0 − 2
9

1
6

2
9

0 1 0 1
9

1
6 − 1

9

0 0 1 2
3 − 1

2
1
3







︸ ︷︷ ︸

I

︸ ︷︷ ︸

B−1

Going back to our original systemAx = b, we multiply byB−1 from the left

B−1Ax = B−1b







− 2
9

1
6

2
9

1
9

1
6 − 1

9

2
3 − 1

2
1
3






·





1 0 3 1
3 2 4 0
2 3 0 1





︸ ︷︷ ︸

·







x1

x2

x3

x4






=







− 2
9

1
6

2
9

1
9

1
6 − 1

9

2
3 − 1

2
1
3






·





1
3
0





︸ ︷︷ ︸






13
18 1 0 0

7
18 0 1 0

− 1
6 0 0 1






·







x1

x2

x3

x4






=







5
18

11
18

− 5
6







13
18 x1 + x2 = 5

18

7
18 x1 + x3 = 11

18

− 1
6 x1 + x4 = − 5

6

→ →

x2 = 5
18 − 13

18 x1

x3 = 11
18 − 7

18 x1

x4 = − 5
6 + 1

6 x1

5.2 Summary

Consider the maximization problem

32 CHAPTER 5. LINEAR ALGEBRA REVIEW

max cTx
subject toAx = b

x ≥ 0

max cT
BxB + cT

NxN

subject to



 B N



 ·










xB

xN










=



 b





1. choose basic variables, letxB denote thevector of basic variables
2. letB denote thebasismatrix formed by taking the columns ofA corresponding to the basic variables
3. letcB denote the vector of the coefficients ofc of the basic variables
4. letxN denote the vector of the remaining (non-basic) variables, and letcN denote the vector of the corresponding

coefficients ofc
5. letN denote the columns ofA corresponding to the non-basic variables inxN

Then (assumingB−1 exists) we can rewrite

Ax = b
BxB + NxN = b

B−1(BxB + NxN) = B−1b

B−1BxB + B−1NxN = B−1b

xB + B−1NxN = B−1b

xB = B−1b− B−1NxN

Now we can substitutexB to the objective function:

z = cTx = cT
BxB + cT

NxN = cT
B

(

B−1b− B−1NxN

)

+ cT
NxN = cT

BB−1b +
(

cT
N − cT

BB−1N
)

xN

We put it together to obtain the corresponding dictionary:

xB = B−1b − B−1NxN

z = cT
BB−1b +

(

cT
N − cT

BB−1N
)

xN

From this we immediately see that the correspondingbasic solutionwhenxN = 0 is given as

xB = B−1b with the value of the objective function z = cT
BB−1b

The non-basic variables in the objective function are
(

cT
N − cT

BB−1N
)

xN. Their coefficients tell us whether or not

this solution is optimal. In other words, the solution is optimal(maximal) if
(

cT
N − cT

BB−1N
)

≤ 0.

6
Sensitivity Analysis

Also calledpost-optimality analysis: determining what effect (if any) do changes to the input problem have on the
optimality (feasibility) of a solution to the problem.

Motivation: often coefficients/values in a mathematical formulation are only best estimates; we need to know how
much room for an error do we have, how sensitive the solution is to the quality of these estimates.

Problem
Phase I.
−→

Initial
Dictionary

(Basis)

Phase II.
−→

Optimal
Dictionary

(Basis)

nonbasic
−→

vars= 0

Optimal
solution

↓ ↓ ↓ ↓

Modified
Problem

−→
Modified

Initial
Dictionary

−→
Modified
Optimal

Dictionary
−→

Modified
Optimal
solution

Modified problem is obtained by:

• changing the objective function
• changing the right-hand side (rhs) of a constraint
• adding a variable/activity
• adding a constraint

For what changes is the original optimal solution also optimal in the modified problem?

For what changes is it feasible?

For what changes is the optimal basis also optimal in the modified problem?

How do we recompute modified optimal solution from optimal basis?

How do we recompute modified optimal dictionary?

Key concepts:

• shadow prices= a mechanism to assign prices toitems(rows)

• reduced costs= costs ofactivities(columns) in terms of shadow prices

33

34 CHAPTER 6. SENSITIVITY ANALYSIS

(We will come back to these later; for now, let us look at examples.)

Matrix notation

max c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + . . . + amnxn = bm

x1, x2, . . . , xn ≥ 0

In matrix notation, we express it as follows:

max cx
Ax = b

x ≥ 0
x =








x1

x2
...

xn








b =








b1

b2
...

bm








A =








a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn








c = (c1, c2, . . . , cn)

When we pick a basis, we split variablesx into basicxB variables andnon-basicxN. Same way we splitc into cB

andcN, and the matrixA splits intoB andN, whereB are the columns corresponding to basic variables, andN the
columns of non-basic variables. Then we can rewrite the LP asfollows:

max cBxB + cNxN

BxB + NxN = b
x ≥ 0

Assuming thatB is non-singular, we have the inverseB−1 of B and so we can
expressxB by multiplying the equation byB−1 from the left.

max cBxB + cNxN

xB + B−1NxN = B−1b
x ≥ 0

Now we substitutexB into the objective function.
(We can then express the corresponding dictionary.)

max cBB−1b + (cN − cBB−1N)xN

xB + B−1NxN = B−1b
x ≥ 0

xB = B−1b − B−1NxN

z = cBB−1b + (cN − cBB−1N)xN

From this we can derive all important quantities:

value of theobjective function: cBB−1b

values of thebasic variables: B−1b

shadow prices: cBB−1

reduced costs: cN − cBB−1N

Example

Let us illustrate this on our favourite example. We use basis{x1, x2, x5}.
max 3x1 + 2x2

x1 + x2 + x3 = 80
2x1 + x2 + x4 = 100

x1 + x5 = 40
x1, x2, x3, x4, x5 ≥ 0

cB = (3, 2, 0) cN = (0, 0)

xB =





x1

x2

x5



 xN =

(
x3

x4

)

A =





1 1 1 0 0
2 1 0 1 0
1 0 0 0 1



 b =





80
100
40



 B =





1 1 0
2 1 0
1 0 1



 N =





1 0
0 1
0 0





the inverse ofB is as follows:B−1 =





−1 1 0
2 −1 0
1 −1 1





6.1. CHANGING THE OBJECTIVE FUNCTION 35

basic variables:B−1b =





−1 1 0
2 −1 0
1 −1 1









80
100
40



 = (−80 + 100, 160− 100, 80− 100 + 40) = (20, 60, 20)

shadow prices:π = cBB−1 = (3, 2, 0)





−1 1 0
2 −1 0
1 −1 1



 = (−3 + 4 + 0, 3− 2 + 0, 0 + 0 + 0) = (1, 1, 0)

reduced costs:cN − cBB−1N = cn −πN = (0, 0)− (1, 1, 0)





1 0
0 1
0 0



 = (0, 0)− (1, 1) = (−1,−1)

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

20 40 60 80

20

40

60

80

100

x2

x1

z $ %x1 & 'x2 = 180

optimal
solution

6.1 Changing the objective function

optimal solutionx1 = 20, x2 = 60

change the coefficientc1 = 3 in z to 2.5 −→ z′ = 2.5x1 + 2x2

−→ the solutionx1 = 20, x2 = 60 still optimal, valuez′ = 170

20 40 60 80

20

40

60

80

100

(2

(1

) * +(1 , .(2 = 180

optimal
solutionn/0

optimal
solution
)1*234

)1 * (1 + 2x2 = 140

)1 * .67(1 + 2x2 * 284

9:;</>

)1 * 7(1 + 2x2 = 220

n/0

optimal
solution
)1*.?4

changec1 = 3 to 1 −→ z′ = x1 + 2x2

−→ the solutionx1 = 20, x2 = 60 not optimal, valuez′ = 140
−→ better solutionx1 = 0, x2 = 80, valuez′ = 160 > 140

36 CHAPTER 6. SENSITIVITY ANALYSIS

changec1 = 3 to 5 −→ z′ = 5x1 + 2x2

−→ the solutionx1 = 20, x2 = 60 not optimal, valuez′ = 220
−→ better solutionx1 = 40, x2 = 20, valuez′ = 240 > 220

problem formulation initial (feasible) dictionary optimal dictionary

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

From any dictionary (basic vars above the line) we can alwaysexpress the objective function below the line

z = 3x1 + 2x2 = 3(

x1
︷ ︸︸ ︷

20+ x3 − x4) + 2(

x2
︷ ︸︸ ︷

60− 2x3 + x4) = 60 + 3x3 − 3x4 + 120− 4x3 + 2x4 = 180− x3 − x4

This allows us to easily obtain a dictionary for the modified problem corresponding tox1 = 20, x2 = 60

c1 = 2.5 c1 = 1 c1 = 5

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z′ = 2.5x1 + 2x2

= 50 + 2.5x3 − 2.5x4

+ 120 − 4x3 + 2x4

z′ = 170 − 1.5x3 − 0.5x4

optimal

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z′ = x1 + 2x2

= 20 + x3 − x4

+ 120 − 4x3 + 2x4

z′ = 140 − 3x3 + x4

not optimal

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z′ = 5x1 + 2x2

= 100 + 5x3 − 5x4

+ 120 − 4x3 + 2x4

z′ = 220 + x3 − 3x4

not optimal

Coefficient ranging

we want to find the range for the coefficientc1 for which the optimal solution remains optimal

z′ = c1x1 + 2x2 = c1(

x1
︷ ︸︸ ︷

20 + x3 − x4) + 2(

x2
︷ ︸︸ ︷

60 − 2x3 + x4) =
= 20c1 + c1x3 − c1x4 + 120 − 4x3 + 2x4

= (20c1 + 120) + (c1 − 4
︸ ︷︷ ︸

≤0

)x3 + (2 − c1
︸ ︷︷ ︸

≤0

)x4

It is optimal if all coefficients are non-positive−→ c1 − 4 ≤ 0 and2− c1 ≤ 0 =⇒ 2 ≤ c1 ≤ 4

Same for 2nd coefficientc2: z′ = 3x1 + c2x2 = 3(

x1
︷ ︸︸ ︷

20 + x3 − x4) + c2(

x2
︷ ︸︸ ︷

60 − 2x3 + x4) =
= 60 + 3x3 − 3x4 + 60c2 − 2c2x3 + c2x4

= (60c2 + 60) + (3 − 2c2
︸ ︷︷ ︸

≤0

)x3 + (c2 − 3
︸ ︷︷ ︸

≤0

)x4

−→ 3− 2c2 ≤ 0 andc2 − 3 ≤ 0 =⇒ 1.5 ≤ c2 ≤ 3

General formula

Changing the coefficientci of xi in z to (ci + ∆)→ the value ofz changes by∆xi

z′ = cBxB + cNxN
︸ ︷︷ ︸

z

+∆xi = z + ∆xi = cBB−1b + (cN −πN)xN + ∆xi

6.2. CHANGING THE RIGHT-HAND SIDE VALUE 37

Non-basic variable: If xi is j-th non-basic variable, then only the coefficient ofxi changes inz, it is increased by∆,
we must sure it remains non-positive.

The original coefficient ofxi is the reduced costci of xi, the j-th coefficient incN −πN.

ci + ∆ ≤ 0 → solve for∆ → ∆ ≤ −ci

Basic variable: If xi is j-th basic variable, then all coefficients ofz change; the coefficients change by−∆a wherea
is thej-th row ofB−1N. The resulting coefficients must remain non-positive.

The original coefficients of variables inz are the reduced costscN −πN.

(cN −πN)− ∆a ≤ 0 → solve for∆

6.2 Changing the right-hand side value

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

optimal dictionary

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

optimal basis{x1, x2, x5}

change the coefficientb1 = 80 on the rhs of the 1st constraint to70 −→ x1 + x2 ≤ 70
−→ the pointx1 = 20, x2 = 60 not feasible
−→ new optimumx1 = 30, x2 = 40 butsame basis{x1, x2, x5}

changeb1 to 50 −→ x1 + x2 ≤ 50
−→ the pointx1 = 20, x2 = 60 not feasible
−→ new optimumx1 = 10, x2 = 40 new basis{x1, x2, x4}

changeb1 to 90 −→ x1 + x2 ≤ 90
−→ the pointx1 = 20, x2 = 60 feasible butnot optimal
−→ new optimumx1 = 10, x2 = 80 same basis

changeb1 to 110 −→ x1 + x2 ≤ 110
−→ the pointx1 = 20, x2 = 60 feasible butnot optimal
−→ new optimumx1 = 0, x2 = 110 new basis{x2, x4, x5}

38 CHAPTER 6. SENSITIVITY ANALYSIS

Coefficient ranging

We want to find the values ofb1 for which the optimal basis remains optimal (optimal solution may not)

initial dictionary
x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

final dictionary
x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

Changingb1 = 80 to 80 + ∆1 where∆1 can be positive or negative. How does it change the final dictionary?

x3 = (80 + ∆1) − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

(x3 − ∆1) = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

x′3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

wherex′3 = x3 − ∆1

same dictionaryexcept thatx3 is nowx′3−→ following the same pivotting steps
we pivot to the basis{x1, x2, x5} and must reach thesamefinal dictionary (withx′3 in place ofx3)

x1 = 20 + x′3 − x4

x2 = 60 − 2x′3 + x4

x5 = 20 − x′3 + x4

z = 180 − x′3 − x4

x1 = 20 + (x3 − ∆1) − x4

x2 = 60 − 2(x3 − ∆1) + x4

x5 = 20 − (x3 − ∆1) + x4

z = 180 − (x3 − ∆1) − x4

x1 = (20− ∆1) + x3 − x4

x2 = (60 + 2∆1) − 2x3 + x4

x5 = (20 + ∆1) − x3 + x4

z = (180 + ∆1) − x3 − x4

final modified dictionary

When is this dictionary optimal? When it isfeasible, since all coefficients inz are non-positive

It is feasible, ifx1, x2, x5 are non-negative. Setting the non-basic variablesx3 = x4 = 0, we obtain

x1 = 20− ∆1 ≥ 0
x2 = 60 + 2∆1 ≥ 0
x5 = 20 + ∆1 ≥ 0

−→
∆1 ≤ 20
∆1 ≥ −30
∆1 ≥ −20

}

−20 ≤ ∆1 ≤ 20

Try ∆1 = 10→ b1 = 90, x1 = 10, x2 = 80, z = 190→ exactlyas we saw before
∆1 = −10→ b1 = 70, x1 = 30, x2 = 40, z = 170

Similarly for b2 = 100 the coeff of the 2nd constraint−→ b2 = 100 + ∆2 =⇒ substitutex′4 = x4 − ∆2

x1 = 20 + x3 − x′4
x2 = 60 − 2x3 + x′4
x5 = 20 − x3 + x′4
z = 180 − x3 − x′4

x1 = 20 + x3 − (x4 − ∆2)
x2 = 60 − 2x3 + (x4 − ∆2)
x5 = 20 − x3 + (x4 − ∆2)
z = 180 − x3 − (x4 − ∆2)

x1 = (20 + ∆2) + x3 − x4

x2 = (60− ∆2) − 2x3 + x4

x5 = (20− ∆2) − x3 + x4

z = (180 + ∆2) − x3 − x4

optimal if feasible−→
x1 = 20 + ∆2 ≥ 0
x2 = 60− ∆2 ≥ 0
x5 = 20− ∆2 ≥ 0

−→
∆2 ≥ −20
∆2 ≤ 60
∆2 ≤ 20

}

−20 ≤ ∆2 ≤ 20

Finally, changingb3 = 40, the rhs of the 3rd constraint−→ b3 = 40 + ∆3 =⇒ substitutex′5 = x5 − ∆3

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x′5 = 20 − x3 + x4

z = 180 − x3 − x4

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

(x5 − ∆3) = 20 − x3 + x4

z = 180 − x3 − x4

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = (20 + ∆3) − x3 + x4

z = 180 − x3 − x4

optimal if feasible−→ (20 + ∆3) ≥ 0 −→ ∆3 ≥ −20 =⇒ −20 ≤ ∆3 ≤ ∞

6.3. DETAILED EXAMPLE 39

General formula

Changing the rhs coefficientbi to bi + ∆. Let d denote thei-the column of B−1. The dictionary changes:

xB = B−1b + ∆d − B−1NxN

z = cBB−1b + cB∆d + (cN − cBB−1N)xN

We find for what values of∆ the values ofxB are non-negative (if the non-basic variablesxN are set to 0).

xB = B−1b
︸ ︷︷ ︸

old values

+∆d ≥ 0

Shadow prices

Let us sumarize:

changingb1 = 80 to 80 + ∆1

x1 = 20− ∆1

x2 = 60 + 2∆1

x5 = 20 + ∆1

z = 180 + ∆1

for −20 ≤ ∆1 ≤ 20

changingb2 = 100 to 100+ ∆2

x1 = 20 + ∆2

x2 = 60− ∆2

x5 = 20− ∆2

z = 180 + ∆2

for −20 ≤ ∆2 ≤ 20

changingb3 = 40 to 40 + ∆3

x1 = 20
x2 = 60
x5 = 20 + ∆3

z = 180

for −20 ≤ ∆3 ≤ ∞

if the change is within the above bounds on∆1, ∆2, ∆3, then:

• increasingthe value ofb1 by 1 unit increasesthe objective (profit) by$1
(decreasing) (decreases)

• increasing/decreasingb2 by 1 unit increases/decreases the profit by$1
• increasing/decreasingb3 by 1 unit increases/decreases the profit by$0







shadow
prices

Economic interpretation: if instead of production we sell/rent all capacity (80 hoursin the carving shop, 100 hours
in the finishing shop, 20 units of remaining demand) at shadowprices ($1/hour,$1/hour,$0/unit), we obtain the same
profit (80× $1 + 100× $1 + 20× $0 = $180).

In fact, if we sell at$1/hour up to20 hours of capacity in the carving shop (since∆1 ≥ −20) or we sell at$1
up to20 hours of capacity in the finishing shop (since∆2 ≥ −20), and optimally produce toys using the remaining
capacity, then our profit does not change (remains$180). Similarly, if we obtain additional capacity at$1/hour up to
20 hours in one of the shops (since∆1 ≤ 20 and∆2 ≤ 20), then profit remains the same.

Thus if we can obtain additional shop capacity at less than$1/hour, then it pays to do it (up to 20 hours) and
produce more toys using the additional capacity (yields higher profit). On the other hand, if we can sell shop capacity
at more than$1/hour, then it pays to do it instead of using it for production.

6.3 Detailed example

In the following LP, optimal solution is achieved for basis{x2, x3, x4}
max z = 2x1 − 3x2 + x3 − x5

x1 − x2 + x3 + x4 = 4
−2x1 + x2 − x3 + x5 = 1

2x2 + x3 + x4 − x5 = 9
x1, x2, x3, x4, x5 ≥ 0

Find ranges for individual coefficients of the objective function and for rhs coefficients.

Using matrices

1. Basis{x2, x3, x4} → split the coefficients to the basis matrixB and non-basic matrixN

40 CHAPTER 6. SENSITIVITY ANALYSIS

→ calculate the inverse ofB, denotedB−1 (recall from linear algebra how to do this)

B =





−1 1 1
1 −1 0
2 1 1



 B−1 =







− 1
3 0 1

3

− 1
3 −1 1

3

1 1 0







N =





1 0
−2 −1
0 −1




cB = (−3, 1, 0)

cN = (2,−1)

π = cBB−1 = (−3, 1, 0)







− 1
3 0 1

3

− 1
3 −1 1

3

1 1 0







= (2
3 ,−1,− 2

3)

cN − cBB−1N = cN −πN =



(2,−1)− (2
3 ,−1,− 2

3)





1 0
−2 1
0 −1







 = (− 2
3 ,− 2

3)

B−1N =







− 1
3 0 1

3

− 1
3 −1 1

3

1 1 0











1 0
−2 1
0 −1



 =







− 1
3 − 1

3

5
3 − 4

3

−1 1







B−1b =







− 1
3 0 1

3

− 1
3 −1 1

3

1 1 0











4
1
9



 =






5
3

2
3

5






2. Changing the right-hand side

b1: change from4 to 4 + ∆, the 1st column ofB−1 is







− 1
3

− 1
3

1







x2 = 5
3 − 1

3 ∆ ≥ 0

x3 = 2
3 − 1

3 ∆ ≥ 0

x4 = 5 + ∆ ≥ 0

→
∆ ≤ 5

∆ ≤ 2

−5 ≤ ∆

→ −5 ≤ ∆ ≤ 2

b2: change from1 to 1 + ∆, the 2nd column ofB−1 is






0

−1

1






x2 = 5
3 + 0∆ ≥ 0

x3 = 2
3 − ∆ ≥ 0

x4 = 5 + ∆ ≥ 0

→
0 ≤ 5

3

∆ ≤ 2
3

−5 ≤ ∆

→ −5 ≤ ∆ ≤ 2
3

b3: change from9 to 9 + ∆, the 3rd column ofB−1 is







1
3

1
3

0







x2 = 5
3 + 1

3 ∆ ≥ 0

x3 = 2
3 + 1

3 ∆ ≥ 0

x4 = 5 + 0∆ ≥ 0

→
−5 ≤ ∆

−2 ≤ ∆

0 ≤ 5

→ −2 ≤ ∆

3. Changing the objective function coefficients

x1 : change from2 to 2 + ∆→ z changes by∆x1

x1 is non-basic with reduced cost− 2
3 (1st coeff incN −πN)→ coefficient ofx1 in z is− 2

3

only the coefficient ofx1 changes inz→ the new coeff is− 2
3 + ∆→ must be non-positive

− 2
3 + ∆ ≤ 0 → ∆ ≤ 2

3

6.3. DETAILED EXAMPLE 41

x2 : change from−3 to−3 + ∆→ z changes by∆x2

x2 is 1st basic variable, the coeffients of(x1, x5) in z change by−∆a wherea is the 1st row ofB−1N
coefficients of(x1, x5) in z are the reduced costscN −πN = (− 2

3 ,− 2
3) anda = (− 1

3 ,− 1
3)

the resulting coefficients must be non-positive (in order for the basis to remain optimal)

(

− 2
3

− 2
3

)

− ∆

(

− 1
3

− 1
3

)

≤
(

0
0

)

→
− 2

3 + 1
3 ∆ ≤

0

− 2
3 + 1

3 ∆ ≤
0

→ ∆ ≤ 2

x3 : change from1 to 1 + ∆→ z changes by∆x3, the 2nd basic variable, the 2nd row ofB−1N = (5
3 ,− 4

3)

− 2
3 − 5

3 ∆ ≤
0

− 2
3 + 4

3 ∆ ≤
0

→
∆ ≥ − 2

5

∆ ≤ 1
2

→ − 2
5 ≤ ∆ ≤ 1

2

x4 : change from0 to 0 + ∆→ z changes by∆x4, the 3rd basic variable, the 3rd row ofB−1N = (−1, 1)

− 2
3 + ∆ ≤ 0

− 2
3 − ∆ ≤ 0

→
∆ ≤ 2

3

∆ ≥ − 2
3

→ − 2
3 ≤ ∆ ≤ 2

3

x5 : changes from−1 to−1 + ∆→ z changes by∆x5, non-basic variable, only coeff− 2
3 of x5 changes by∆

− 2
3 + ∆ ≤ 0 → ∆ ≤ 2

3

Using dictionaries (optional)

1. Construct corresponding dictionary

Change rhs to (artificial) variablesb1, b2, b3 and pivot to the basis{x2, x3, x4}
x1 − x2 + x3 + x4 = b1

−2x1 + x2 − x3 + x5 = b2

2x2 + x3 + x4 − x5 = b3

x2 = −b1 + x1 + x3 + x4

−2x1 + (−b1 + x1 + x3 + x4) − x3 + x5 = b2

2(−b1 + x1 + x3 + x4) + x3 + x4 − x5 = b3

⇐ −x1 + + x4 + x5 = b1 + b2

2x1 + 3x3 + 3x4 − x5 = 2b1 + b3
x4 = b1 + b2 + x1 − x5

2x1 + 3x3 + 3(b1 + b2 + x1 − x5) − x5 = 2b1 + b3

5x1 + 3x3 + − 4x5 = −b1 − 3b2 + b3 x3 = − 1
3 b1 − b2 +

1
3 b3 − 5

3 x1 +
4
3 x5

substitute back tox4 and then tox2:

x4 = b1 + b2 + x1− x5 x2 = −b1 + x1 + x3 + x4 = −b1 + x1 + (− 1
3 b1 − b2 +

1
3 b3 − 5

3 x1 +
4
3 x5)

+ (b1 + b2 + x1 − x5) = − 1
3 b1 +

1
3 b3 +

1
3 x1 +

1
3 x5

substitute toz→ z = 2x1 − 3x2 + x3 − x5 = 2x1 − 3(− 1
3 b1 +

1
3 b3 +

1
3 x1 +

1
3 x5)

+ (− 1
3 b1− b2 +

1
3 b3− 5

3 x1 +
4
3 x5)− x5 = 2

3 b1− b2− 2
3 b3− 2

3 x1− 2
3 x5

Resulting dictionary:

x2 = − 1
3 b1 + 1

3 b3 + 1
3 x1 + 1

3 x5

x3 = − 1
3 b1 − b2 + 1

3 b3 − 5
3 x1 + 4

3 x5

x4 = b1 + b2 + x1 − x5

z = 2
3 b1 − b2 − 2

3 b3 − 2
3 x1 − 2

3 x5

42 CHAPTER 6. SENSITIVITY ANALYSIS

2. Changing the right-hand side coefficients

b1 : changeb1 = 4 to 4 + ∆, and letb2 = 1 andb3 = 9 the same. Check if the resulting values of basic variables are
non-negative (remember to set the non-basic variables to zero).

x2 = − 1
3 (4 + ∆) + 9

3 ≥ 0

x3 = − 1
3 (4 + ∆) − 1 + 9

3 ≥ 0

x4 = (4 + ∆) + 1 ≥ 0

→
∆ ≤ 5

∆ ≤ 2

−5 ≤ ∆

→ −5 ≤ ∆ ≤ 2

b2 : changeb2 = 1 to 1 + ∆, let b1 = 4 andb3 = 9

x2 = − 4
3 + 9

3 ≥ 0

x3 = − 4
3 − (1 + ∆) + 9

3 ≥ 0

x4 = 4 + (1 + ∆) ≥ 0

→
0 ≤ 5

3

∆ ≤ 2
3

−5 ≤ ∆

→ −5 ≤ ∆ ≤ 2
3

b3 : changeb3 = 9 to 9 + ∆, let b1 = 4 andb2 = 1

x2 = − 4
3 + 1

3 (9 + ∆) ≥ 0

x3 = − 4
3 − 1 + 1

3 (9 + ∆) ≥ 0

x4 = 4 + 1 ≥ 0

→
−5 ≤ ∆

−2 ≤ ∆

0 ≤ 5

→ −2 ≤ ∆

3. Changing the objective function coefficients

set the rhs back tob1 = 4, b2 = 1, b3 = 9 and expressz = 8
3 − 1− 18

3 − 2
3 x1 − 2

3 x5 = − 13
3 − 2

3 x1 − 2
3 x5

→ changing the coefficient ofxi in z by ∆ changesz by exactly∆xi

x1: change2x1 to (2 + ∆)x1 −→ z′ = − 13
3 − 2

3 x1 − 2
3 x5 + ∆x1 = − 13

3 + (− 2
3 + ∆

︸ ︷︷ ︸

≤0

)x1 − 2
3 x5

Thus− 2
3 + ∆ ≤ 0 → ∆ ≤ 2

3

x2: change−3x2 to (−3 + ∆)x2 −→ z′ = − 13
3 − 2

3 x1 − 2
3 x5 + ∆x2

substitutex2 from the dictionary

z′ = − 13
3 − 2

3 x1 − 2
3 x5 + ∆(5

3 + 1
3 x1 +

1
3 x5) = (− 13

3 + ∆ 5
3) + (− 2

3 +
1
3 ∆

︸ ︷︷ ︸

≤0

)x1 + (− 2
3 + 1

3 ∆
︸ ︷︷ ︸

≤0

)x5

Thus− 2
3 + 1

3 ∆ ≤ 0 → ∆ ≤ 2

x3: change1x3 to (1 + ∆)x3 −→ z′ = − 13
3 − 2

3 x1 − 2
3 x5 + ∆x3 =

= − 13
3 − 2

3 x1 − 2
3 x5 + ∆(2

3 − 5
3 x1 +

4
3 x5) = (− 13

3 + 2
3 ∆) + (− 2

3 − 5
3 ∆

︸ ︷︷ ︸

≤0

)x1 + (− 2
3 +

4
3 ∆

︸ ︷︷ ︸

≤0

)x5

− 2
3 − 5

3 ∆ ≤ 0

− 2
3 + 4

3 ∆ ≤ 0
→

− 2
5 ≤ ∆

∆ ≤ 1
2

→ − 2
5 ≤ ∆ ≤ 1

2

x4: change0x4 to (0 + ∆)x4 −→ z′ = − 13
3 − 2

3 x1 − 2
3 x5 + ∆x4 =

= − 13
3 − 2

3 x1 − 2
3 x5 + ∆ (5 + x1 − x5) = (− 13

3 + 5∆) + (− 2
3 + ∆

︸ ︷︷ ︸

≤0

)x1 + (− 2
3 − ∆

︸ ︷︷ ︸

≤0

)x5

− 2
3 + ∆ ≤ 0

− 2
3 − ∆ ≤ 0

→
∆ ≤ 2

3

− 2
3 ≤ ∆

→ − 2
3 ≤ ∆ ≤ 2

3

x5: change−x5 to (−1 + ∆)x5 −→ z′ = − 13
3 − 2

3 x1 − 2
3 x5 + ∆x5 = = − 13

3 − 2
3 x1 + (− 2

3 + ∆
︸ ︷︷ ︸

≤0

)x5

− 2
3 + ∆ ≤ 0 → ∆ ≤ 2

3

6.4. ADDING A VARIABLE/ACTIVITY 43

6.4 Adding a variable/activity

Toy cars: 1
2 hour carving, 1 hour finishing, sale price$1

x6 = the number of cars produced

Max 3x1 + 2x2 + x6

x1 + x2 + x3 + 1
2 x6 = 80

2x1 + x2 + x4 x6 = 100
x1 + x5 = 40

x1, x2, x3, x4, x5, x6 ≥ 0

x3 = 80 − x1 − x2 − 1
2 x6

x4 = 100 − 2x1 − x2 − x6

x5 = 40 − x1

z = 0 + 3x1 + 2x2 + x6

=⇒
x1 = 20 + x3 − x4 + ?x6

x2 = 60 − 2x3 + x4 + ?x6

x5 = 20 − x3 + x4 + ?x6

z = 180 − x3 − x4 + ?x6

We makex6 non-basic→ produce no carsx6 = 0→ previously optimal solution remains feasible

Is it also optimal? In other words, does it pay to produce cars? Price outthe new variable

• pricing out an activity/variable/column≡ evaluating thecostof producing one unit of product (activity)xj in
terms of current shadow prices
• reduced cost≡ net contribution of one unit ofxj to the value of the objective function (profit)

=
revenue from one unit ofxj

(the coefficient ofxj in z) —
the production cost in shadow prices

(multiply the coeffs inxj-th column by the
respective shadow prices and then sum up)

→ if the reduced cost is positive, then it pays to producexj;
→ if it is negative, then we are better-off producing other items (which is equivalent to selling all available

resources at shadow prices)

Shadow prices:π1 = $1, π2 = $1, π3 = $0
→ one hour in each shop costs$1 while each unit of remaining demand (3rd constraint) costs$0

Price outx6 :

cost o f carving
︷ ︸︸ ︷

π1 × 1
2 +

cost o f f inishing
︷ ︸︸ ︷

π2 × 1 + π3 × 0 = $1× 1
2 + $× 1 + $0× 0 = $1.50

Reduced cost ofx6:

sale price
︷︸︸︷

$1 −
production cost
︷ ︸︸ ︷

$1.50 = − $0.50

Answer: it does not pay to produce toy cars, we would be losing$.50 for each unit (instead of producing other
products – shadow prices reflect the value of current production)→ current solution remains optimal

Note: notice that reduced costs areprecisely the coefficients of non-basic variables in the last row of dictionary, the
z-value. If they are all non-positive, then we know the solution is optimal! Put differently, if reduced costs of all
non-basic variables (i.e. the coefficients inz) are not positive, then we do not make more by producing any ofthose
items (making one of them basic and thus non-zero) and so the solution is optimal.

Conclusion from this is that−0.5 is the coefficient ofx6 in the modified final dictionary

x1 = 20 + x3 − x4 + ?x6

x2 = 60 − 2x3 + x4 + ?x6

x5 = 20 − x3 + x4 + ?x6

z = 180 − x3 − x4 − 0.5 x6

To determine that the solution is optimal, wedo not need to know
all the other missing coefficients! More on that later. . .

6.5 Adding a constraint

packaging 150 pieces of cardboard, 1 piece per each toy soldier, 2 pieces per each toy train

44 CHAPTER 6. SENSITIVITY ANALYSIS

new constraint: x1 + 2x2 ≤ 150

introduce a slack variablex6: x6 = 150 − x1 − 2x2

substitute from the final dictionary:x6 = 150 − (20 + x3 − x4)− 2(60− 2x3 + x4) = 10 + 3x3 − x4

Adding this to the final dictionary yields a feasible dictionary (since the value10 in the contraint is non-negative)→
optimal solution remains optimal after adding the constraint

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

x6 = 10 + 3x3 − x4

z = 180 − x3 − x4

What if we only have130 units of cardboard?

Then the original optimal solution becomes infeasible in the modified prob-
lem (the constant term works out to−10 instead of10) and we need to recal-
culate (or use the Dual Simplex Method)

Conclusion: so long as we have at least 140 units of cardboardwe don’t need to change the production plan

6.6 Modifying the left-hand side of a constraint

Equipment shortages cause that toy soldiers require 3 hoursin the finishing shop (instead of 2).

Original problem Initial dictionary Final dictionary
Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

Modified problem Modified Initial dictionary
Max 3x1 + 2x2

x1 + x2 ≤ 80
3x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

x3 = 80 − x1 − x2

x4 = 100 − 3x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

−→ ?

Rearrange the terms in the dictionary and substitutex′4 = x4 + x1 in the final dictionary (x′4 in place ofx4)

x3 = 80 − x1 − x2
x′4

︷ ︸︸ ︷

(x4 + x1) = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

→
x1 = 20 + x3 − x′4
x2 = 60 − 2x3 + x′4
x5 = 20 − x3 + x′4
z = 180 − x3 − x′4

x1 = 20 + x3 − (x4 + x1)
x2 = 60 − 2x3 + (x4 + x1)
x5 = 20 − x3 + (x4 + x1)
z = 180 − x3 − (x4 + x1)

Eliminatex1 from the rhs by solving forx1 from the first equation, and then substituting:

x1 = 20 + x3 − (x4 + x1)

2x1 = 20 + x3 − x4

x1 = 10 + 1
2 x3 − 1

2 x4

x2 = 60− 2x3 + (x4 + x1) = 60− 2x3 + x4

+ (10+ 1
2 x3 − 1

2 x4) = 70− 3
2 x3 +

1
2 x4

x5 = 20− x3 + (x4 + x1) = 20− x3 + x4

+ (10+ 1
2 x3 − 1

2 x4) = 30− 1
2 x3 +

1
2 x4

z = 180− x3 − (x4 + x1) = 180− x3 − x4

− (10+ 1
2 x3 − 1

2 x4) = 170− 3
2 x3 − 1

2 x4

x1 = 10 + 1
2 x3 − 1

2 x4

x2 = 70 − 3
2 x3 + 1

2 x4

x5 = 30 − 1
2 x3 + 1

2 x4

z = 170 − 1
2 x3 − 1

2 x4

Conclusion: the optimal solution remains optimal.

What if we buy new machine that shortens the finishing processof toy soldiers to 1.5 hour (instead of 2) ? Then current
optimal solution will no longer be optimal (+x4 will appear in thez value).

(Curiously, what happpens if it shortens toexactly1 hour? Then the finishing constraint is redundant.)

7
Duality

7.1 Pricing interpretation

Back to our usual manufacturing LP problem. For the sake of illustration, we drop the 3rd constraint, and consider the
items asblocks of woodandcans of paint(instead of shop hours).

Manufacturer Market

Max 3x1 + 2x2

x1 + x2 ≤ 80 [wood]
2x1 + x2 ≤ 100 [paint]

x1, x2 ≥ 0

Prices:
y1 = price (in$) of one block of wood
y2 = price (in$) of one can of paint

Manufacturer owns 80 blocks of wood and 100 cans of paint. He can sell his stock at market prices or buy additional
stock at market prices. He can also produce and sell goods (toys) using the available stock.

What is his best strategy (assuming everything produced will be sold)?

⋆ Selling stock generates a profit of80y1 + 100y2.

⋆ If the cost (in market prices) of producingx1 toy soldiersis strictly less than the sale price, i.e. if
y1 + 2y2 < 3

then there isno limit on the profit of manufacturer. He can generate arbitrarily large profit by buying additional
stock to produce toy soldiers in arbitrary amounts.

Why? The manufacturer can producex1 toy soldiers by purchasingx1 blocks of wood, and2x1 additional cans of
paint. He paysx1(y1 + 2y2) and makes3x1 in sales. Net profit is thenx1(3− y1 − 2y2). Now, if y1 + 2y2 < 3,
say if y1 + 2y2 ≤ 2.9, then the net profit is thenx1(3− y1 − 2y2) ≥ (3− 2.9) = 0.1x1. So making arbitrarily
manyx1 toy soldiers generates a profit of0.1x1 (arbitrarily high).

⋆ Similarly, no limit on the profit if the cost of producingx2 toy trainsis less than the sale price, i.e. if
y1 + y2 < 2

⋆ Market prices arenon-negative.

Market (the competition) will not allow the manufacturer tomake arbitrarily large profit. It will set its prices so that
the manufacturer makes as little as possible. The market is thus solving the following:

Min 80y1 + 100y2

y1 + 2y2 ≥ 3 [toy soldiers]
y1 + y2 ≥ 2 [toy trains]

y1, y2 ≥ 0







Dual of the manufacturing problem

45

46 CHAPTER 7. DUALITY

Estimating the optimal value

Max 3x1 + 2x2

x1 + x2 ≤ 80 [wood]
2x1 + x2 ≤ 100 [paint]

x1, x2 ≥ 0

Before solving the LP, the manufacturer wishes to get a quickrough estimate (upper bound) on the value of the optimal
solution. For instance, the objective function is3x1 + 2x2 which is certainly less than3x1 + 3x2, since the variables
x1, x2 are non-negative. We can rewrite this as3(x1 + x2) and we notice thatx1 + x2 ≤ 80 by the first constraint.
Together we have:

z = 3x1 + 2x2 ≤ 3x1 + 3x2 ≤ 3(x1 + x2) ≤ 3× 80 = $240

Conclusion is that every production plan will generate no more than$240, i.e., the value of any feasible solution
(including the optimal one) is not more than240. Likewise we can write:

z = 3x1 + 2x2 ≤ 4x1 + 2x2 ≤ 2(2x1 + x2) ≤ 2× 100 = $200

since2x1 + x2 ≤ 100 by the 2nd constraint. We can also combine constraints for aneven better estimate:

z = 3x1 + 2x2 ≤ (x1 + x2) + (2x1 + x2) ≤ 80 + 100 = $180

In general, we considery1 ≥ 0, y2 ≥ 0 and takey1 times the 1st contraint +y2 times the 2nd constraint.

y1(x1 + x2) + y2(2x1 + x2) ≤ 80y1 + 100y2

We can rewrite this expression by collecting coefficients ofx1 andx2:

(y1 + 2y2)x1 + (y1 + y2)x2 ≤ 80y1 + 100y2

In this expression, if thecoefficientof x1 is at least3 and the coefficient ofx2 is at least2, i.e., if

y1 + 2y2 ≥ 3

y1 + y2 ≥ 2

then, just like before, we obtain an upper bound on the value of z = 3x1 + 2x2:

z = 3x1 + 2x2 ≤ (y1 + 2y2)x1 + (y1 + y2)x2 = y1(x1 + x2) + y2(2x1 + x2) ≤ 80y1 + 100y2

If we want the best possible upper bound, we want this expression be as small as possible.

Min 80y1 + 100y2

y1 + 2y2 ≥ 3
y1 + y2 ≥ 2

y1, y2 ≥ 0







TheDual problem

The original problem is then called thePrimal problem.

Primal

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1, x2 ≥ 0

Min 80y1 + 100y2

y1 + 2y2 ≥ 3
y1 + y2 ≥ 2

y1, y2 ≥ 0

Dual

Matrix formulation

In general, for maximization problem with≤ inequalities, the dual is obtained simply by

• transposing (flipping around the diagonal) the matrixA,
• swapping vectorsb andc,
• switching the inequalities to≥, and
• changingmax to min.

max cTx
Ax ≤ b

x ≥ 0

min bTy

ATy ≥ c
y ≥ 0

7.2. DUALITY THEOREMS AND FEASIBILITY 47

7.2 Duality Theorems and Feasibility

Theorem 3 (Weak Duality Theorem). If x is any feasible solution of the primal andy is any feasible solution of the
dual, then cTx ≤ bTy

In other words, the value ofany feasible solution to thedual yields an upper bound on the value of any feasible
solution (including the optimal) to theprimal .

cTx ≤ (ATy)Tx = (yTA)x = yT(Ax) ≤ yTb = bTy

Consequently, ifprimal is unbounded, thendual must beinfeasibleand likewise, ifdual is unbounded, thenprimal
must beinfeasible. Note that is it possible that bothprimal anddual are infeasible. But if both arefeasible, then
neither of them isunbounded.

d
u
a
l

primal
infeasible feasible bounded unbounded

infeasible X ✗ X

feasible bounded ✗ X ✗
unbounded X ✗ ✗

X possible

✗ impossible

Strong Duality and Complementary Slackness

Theorem 4 (Strong Duality Theorem). If x is anoptimal solution to the primal andy is anoptimal solution to the
dual, then cTx = bTy

Moreover,yT(b−Ax
︸ ︷︷ ︸

slack in
primal

) = 0 andxT(ATy− c
︸ ︷︷ ︸

slack in
dual

) = 0.

In simple terms: whenever a constraint isnot tight (has a positive slack) in theprimal , then thedual variable corre-
sponding to this constraint must be 0. Conversely, if aprimal variable is strictly positive, then the correspondingdual
constraint must be tight (slack is zero).

This can be seen as follows (note thatx ≥ 0, y ≥ 0, Ax ≥ b andATy ≥ c)

0 ≤ yT(b−Ax) = yTb− yTAx = bTy− (ATy)Tx ≤ bTy− cTx = 0

0 ≤ xT(ATy− c) = (yTA− cT)x = yT(Ax)− cTx ≤ yTb− cTx = bTy− cTx = 0

7.3 General LPs

If LP contains equalities or unrestricted variables, thesecan be also handled with ease. In particular,

equality constraint corresponds to anunrestricted variable, andvice-versa.

Why? Notice that when we produced an upper bound, we considered only non-negativey1 ≥ 0, since multiplying
the≤ constraint by a negative value changes the sign to≥ and thus the upper bound becomes a lower bound instead.
However, if the constraint was an equality (i.e. if we hadx1 + x2 = 80 instead), we could allow negativey1 as well
and still produce an upper bound. For instance, we could write

3x1 + 2x2 ≤ 5x1 + 2x2 = (−1)× (x1 + x2
︸ ︷︷ ︸

=80

) + 3× (2x1 + x2
︸ ︷︷ ︸

≤100

) ≤ −80 + 3× 100 = $220

So we would makey1 unrestricted.

Conversely, if some variable in our problem, sayx1, were unrestricted in sign (could be negative as well), thenwe
couldnot conclude that3x1 + 2x2 ≤ 4x1 + 2x2 holds for all feasible solutions, as we did in our 2nd estimate; namely
if x1 is negative, then this isnot true (it is actually> rather than≤). However, ifx1 is unrestricted butx2 ≥ 0, we
could still conclude that3x1 + 2x2 ≤ 3x1 + 2x2, since the coefficient ofx1 is not changing in this expression. In
our general expression, we had(y1 + 2y2)x1 and we demanded that the coefficienty1 + 2y2 of x1 is at least 3 for the

48 CHAPTER 7. DUALITY

upper bound to work. Ifx1 is unrestricted, we can simply insist that the coefficienty1 + 2y2 equals3 to make the
upper bound work.

The same way we can conclude that

≥ constraint corresponds to annon-positivevariable, andvice-versa.

Primal (Max) Dual (Min)
i-th constraint≤ variableyi ≥ 0
i-th constraint≥ variableyi ≤ 0
i-th constraint= variableyi unrestricted

xi ≥ 0 i-th constraint≥
xi ≤ 0 i-th constraint≤

xi unrestricted i-th constraint=

Max 3x1 + 2x2 + x3

x1 + x2 + 1
2 x3 ≤ 80

2x1 + x2 + x3 = 100
x1 + x3 ≥ 40

x1 unrestricted
x2 ≤ 0
x3 ≥ 0

Primal

Min 80y1 + 100x2 + 40x3

y1 + 2y2 + y3 = 3
y1 + y2 ≤ 2

1
2 y1 + y2 + y3 ≥ 1

y1 ≥ 0
y2 unrestricted

y3 ≤ 0

Dual

7.4 Complementary slackness

max 6x1 + x2 − x3 − x4

x1 + 2x2 + x3 + x4 ≤ 5
3x1 + x2 − x3 ≤ 8

x2 + x3 + x4 = 1

x2, x3, x4 ≥ 0
x1 unrestricted

We wish to check if one of the following assignments is an optimal solution.

a) x1 = 2, x2 = 1, x3 = 0, x4 = 0
b) x1 = 3, x2 = 0, x3 = 1, x4 = 0

To this end, we useComplementary Slackness. Let us discuss the theory first.

Theory

As usual, letx denote the vector of variables, letc be the vector of coefficients of variables of the objective function,
let A be the coefficient matrix of the left-hand side of our constraints, and letb be the vector of the right-hand side of
the constraints. Lety be the variables of the dual.

max cTx

Ax ≤ b
x ≥ 0

PRIMAL

min bTy

ATy ≥ c
y ≥ 0

DUAL

We say that vectorsx = (x1, . . . , xn) andy = (y1, . . . , ym) arecomplementaryif

yT(b−Ax
︸ ︷︷ ︸

slack in
primal

) = 0 andxT(ATy− c
︸ ︷︷ ︸

slack in
dual

) = 0

In other words,

7.4. COMPLEMENTARY SLACKNESS 49

• wheneveryi > 0, thenx satisfies thei-th constraint with equality (“the constraint istight ”)
• wheneverxi > 0, theny satisfies thei-th constraint of the dual with equality

Exercise.Show that the shadow pricesπ defined by (a basic solution)x are always complementary tox.

Recall thatStrong Duality this says that ifx is an optimal solution to the primal andy is an optimal solution to the
dual, thencTx = bTy. In fact, more is true.

Complementary Slackness(and some consequences): Assume thatx is an optimal solution to the primal.

• If y is anoptimal solution to the dual, thenx andy arecomplementary.
• If y is afeasiblesolution in the dual and iscomplementaryto x, theny is optimal in the dual.
• Thereexistsa feasiblesolutiony to the dual such thatx andy arecomplementary.

Notice that the last bullet follows from our observation about shadow prices. Another consequence of this is:

If x is a basic feasible primal solution andπ are the corresponding shadow prices, then
x is optimal if and only if π is a feasiblesolution of the dual

If we have equalities,≥-inequalities, unrestricted or non-positive variables, everything works just the same.

Back to example

To check if the provided solutions are optimal, we need the dual.

max 6x1 + x2 − x3 − x4

x1 + 2x2 + x3 + x4 ≤ 5
3x1 + x2 − x3 ≤ 8

x2 + x3 + x4 = 1

x2, x3, x4 ≥ 0
x1 unrestricted

min 5y1 + 8y2 + y3

y1 + 3y2 = 6
2y1 + y2 + y3 ≥ 1

y1 − y2 + y3 ≥ −1
y1 + y3 ≥ −1

y1, y2 ≥ 0
y3 unrestricted

DUAL

a) x1 = 2, x2 = 1, x3 = 0, x4 = 0 → assumex is optimal, then

→ there arey1, y2, y3 such thaty = (y1, y2, y3) is feasible in the dual and complementary tox

check1st primal constraint:x1 + 2x2 + x3 + x4 = 2 + 2 + 0 + 0 = 4 < 5 not tight
→ thereforey1 must be0 becausey is complementary tox

check2nd primal constraint:3x1 + x2 − x3 = 6 + 1− 0 = 7 < 8 not tight
→ thereforey2 must be0 becausey is complementary tox

Knowing this, check the1st dual constraint:y1 + 3y2 = 0 + 0 = 0 6= 6
→ this shows that(y1, y2, y3) not feasiblein the dual, but we assume that it is.

This means that our assumptions were wrong and so(x1, x2, x3, x4) is not optimal.

b) x1 = 3, x2 = 0, x3 = 1, x4 = 0 → again assume thatx is optimal, then

→ there arey1, y2, y3 such thaty = (y1, y2, y3) is feasible in the dual and complementary tox

check1st primal constraint:x1 + 2x2 + x3 + x4 = 3 + 0 + 1 + 0 = 4 < 5 not tight → y1 = 0

check2nd primal constraint:3x1 + x2 − x3 = 9 + 0− 1 = 8 tight

check3rd primal constraint:x1 + x2 + x3 = 1 tight

check sign constraints:x2, x3, x4 ≥ 0→ we conclude that(x1, x2, x3, x4) is feasiblein the primal

Now we look at values inx with respect to the dual constraints:

x1 is unrestricted → 1st dual constrainty1 + 3y2 = 6 is (always)tight

50 CHAPTER 7. DUALITY

x3 > 0 we deduce → 3rd dual constraint must betight : y1 − y2 + y3 = −1

Together we have y1 = 0
y1 + 3y2 = 6
y1 − y2 + y3 = −1

This has a unique solutiony1 = 0, y2 = 2, y3 = 1. By construction, this solution iscomplementaryto x.

The last step is tocheck if y is alsofeasiblein the dual. We already checked1st and3rd dual constraint.

check2nd dual constraint:2y1 + y2 + y3 = 0 + 2 + 1 = 3 ≥ 1→ the constraint issatisfied

check4th dual constraint:y1 + y3 = 0 + 1 ≥ −1 the constraint issatisfied

check sign restrictions:y1 = 0 ≥ 0 andy2 = 2 ≥ 0→ sign restrictionssatisfied

→ this shows that(y1, y2, y3) indeed afeasiblesolution to the dual.

From this we can conclude that(x1, x2, x3, x4) is indeedoptimal.

Summary

• givenx, check ifx is feasible
• then find which variablesyi should be0
• then find which dual constraints should be tight
• this yields a system of equations
• solve the system
• verify that the solution is feasible in the dual

If all these steps succeed, then the givenx is indeed optimal; otherwise, it is not.

Question: what happens ifx is feasible but not a basic solution ?

Review

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = 40 − x1

z = 0 + 3x1 + 2x2

x1 = 20 + x3 − x4

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4

z = 180 − x3 − x4

Original problem Initial dictionary Optimal dictionary

Add a new activity:toy cars, 1
2h carving,1h finishing,1 unit towards demand limit,$1 price→ x6 = #cars

Max 3x1 + 2x2 + x6

x1 + x2 + 1
2 x6 ≤ 80

2x1 + x2 + x6 ≤ 100
x1 + x6 ≤ 40

x1, x2, x6 ≥ 0

x3 = 80 − x1 − x2 − 1
2 x6

x4 = 100 − 2x1 − x2 − x6

x5 = 40 − x1 − x6

z = 0 + 3x1 + 2x2 + x6

?

Original problem Initial dictionary Optimal dictionary

in the optimal dictionary→ makex6 non-basic(no production of cars)→ feasiblemodified dictionary

x3 +
1
2 x6 = 80 − x1 − x2

x4 + x6 = 100 − 2x1 − x2

x5 + x6 = 40 − x1

z− x6 = 0 + 3x1 + 2x2

x′3 = 80 − x1 − x2

x′4 = 100 − 2x1 − x2

x′5 = 40 − x1

z′ = 0 + 3x1 + 2x2

→
x1 = 20 + x′3 − x′4
x2 = 60 − 2x′3 + x′4
x′5 = 20 − x′3 + x′4
z′ = 180 − x′3 − x′4

substitute:x′3 = x3 +
1
2 x6, x′4 = x4 + x6, x′5 = x5 + x6, z′ = z− x6

7.4. COMPLEMENTARY SLACKNESS 51

x1 = 20 + (x3 +
1
2 x6) − (x4 + x6)

x2 = 60 − 2(x3 +
1
2 x6) + (x4 + x6)

x5 + x6 = 20 − (x3 +
1
2 x6) + (x4 + x6)

z− x6 = 180 − (x3 +
1
2 x6) − (x4 + x6)

x1 = 20 + x3 − x4 − 1
2 x6

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4 − 1
2 x6

z = 180 − x3 − x4 − 1
2 x6

Add a new constraint:packaging, 250 units of cardboard, 3/soldier, 4/train, 1/car→ x7 = slack

Max 3x1 + 2x2 + x6

x1 + x2 + 1
2 x6 ≤ 80

2x1 + x2 + x6 ≤ 100
x1 + x6 ≤ 40

3x1 + 4x2 + x6 ≤ 250
x1, x2, x6 ≥ 0

x3 = 80 − x1 − x2 − 1
2 x6

x4 = 100 − 2x1 − x2 − x6

x5 = 40 − x1 − x6

x7 = 250 − 3x1 − 4x2 − x6

z = 0 + 3x1 + 2x2 + x6

in the optimal dictionary→ makex7 basic→ expresx7 using the dictionary→ new dictionary

x7 = 250− 3x1 − 4x2 − x6 = 250− 3(20+ x3 − x4 − 1
2 x6)− 4(60− 2x3 + x4)− x6 = −50 + 5x3 − x4 +

1
2 x6

x1 = 20 + x3 − x4 − 1
2 x6

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4 − 1
2 x6

z = 180 − x3 − x4 − 1
2 x6

→

x1 = 20 + x3 − x4 − 1
2 x6

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4 − 1
2 x6

x7 = −50 + 5x3 − x4 + 1
2 x6

z = 180 − x3 − x4 − 1
2 x6

If the resulting dictionary is feasible, then it is also optimal (we don’t changez, all coeffs still non-positive)

However, the resulting dictionary may beinfeasible if some basic variable is negative (herex7 < 0)

→ to recover optimal solution, we useDual Simplex Method.

8
Other Simplex Methods

8.1 Dual Simplex Method

– we use when the dictionary isinfeasiblebut dually feasible
– same as Simplex on the Dualwithout dealing with the Dual directly
– useful when adding new constraints to quickly recover optimal solution

Recall: for every (basic) solution of the Primal, we haveshadow pricesthat we can assign to each item (constraint)
in such a way that the total value of items in shadow prices isexactly the value of the solution

P
R
I

M
A
L

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x1, x2 ≥ 0

x1 = 40 − x5

x3 = 40 − x2 + x5

x4 = 20 − x2 + 2x5

z = 120 + 2x2 − 3x5

Solution:x1 = 40, x2 = 0, x3 = 40,
x4 = 20, x5 = 0 of valuez = 120

Shadow prices:π1 = 0, π2 = 0, π3 = 3

80π1 + 100π2 + 40π3 = 120 = 3x1 + 2x3

D
U
A
L

Min 80y1 + 100y2 + 40y3

y1 + 2y2 + y3 ≥ 3
y1 + y2 ≥ 2

y1, y2, y3 ≥ 0

Note: the above shadow prices→ an infeasiblesolution in Dual

80π1 + 100π2 + 40π3 = 120 the same value as Primal

π1 + 2π2 + π3 = 3 ≥ 3
π1 + π2 = 0 6≥ 2

π1 = 0 ≥ 0, π2 = 0 ≥ 0, π3 = 3 ≥ 0

Shadow prices corresponding to a non-optimalfeasiblesolution of the Primal areinfeasible in the Dual

Shadow prices corresponding to anoptimal solution of the Primal areoptimal in the Dual.

Shadow prices for aninfeasiblesolution of the Primalmay or may not befeasiblein the Dual.

A solution of the Primal isdually feasible if the corresponding shadow prices arefeasiblein the dual.

Dual Simplex Algorithm

We maintain that the current solution isdually feasiblebut may itself beinfeasible

x1 = 20 + x3 − x4 − 1
2 x6

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4 − 1
2 x6

x7 = −50 + 5x3 − x4 + 1
2 x6

z = 180 − x3 − x4 − 1
2 x6

How do we know that the solution isdually feasible?

. . . if all coefficients of variables inz arenon-positive

(Why? Because the coeffs of slack variables are shadow prices
while the coeffs of non-slack variables are reduced costs)

← is dually feasible

52

8.1. DUAL SIMPLEX METHOD 53

Dually
feasible
solution

Is feasible?
Optimal
solution

NO
Improve the solution

YES

cannot be improved LP is Infeasible

Sincex7 < 0, the solution isinfeasible. We want to make itfeasible. In order to do that, we need toincreasethe
value ofx7. We makex7 non-basic (value= 0).

We can do this by increasing one of thenon-basicvariables (x3 or x4 or x6), i.e., by making one of the non-basic
variablesbasic. Clearly,x4 is not good for this since increasingx4 makesx7 only more negative (x4 appears in the
equation forx7 with negative coefficient).

So we must increasex3 or x6. But we also must make sure that this results indually feasible dictionary, i.e., the
resulting coefficients of non-basic variables inz are non-positive.

If x6 enters the basis, thenx7 = −50 + 5x3 − x4 +
1
2 x6 → 1

2 x6 = 50− 5x3 + x4 + x7 and so

z = 180− x3 − x4 − 1
2 x6 = 180− x3 − x4 − 1

2 × 2(50− 5x3 + x4 + x7) = 130 + 4x3 − 2x4 − x7

If x3 enters the basis, thenx7 = −50 + 5x3 − x4 +
1
2 x6 → 5x3 = 50 + x4 − 1

2 x6 + x7 and so

z = 180− x3 − x4 − 1
2 x6 = 180− 1× 1

5 (50 + x4 − 1
2 x6 + x7)− x4 − 1

2 x6 = 170− 6
5 x4 − 2

5 x6 − 1
5 x7

Whenx6 enters the basis, the solution isnot dually feasible, while itis whenx3 enters the basis. How do we find out?
Both substitutions are a result ofadding to z some multiple∆ of the equation forx7.

z = 180− x3 − x4 − 1
2 x6 − ∆(

0
︷ ︸︸ ︷

50− 5x3 + x4 − 1
2 x6 + x7)

= (180− 50∆) + (−1 + 5∆
︸ ︷︷ ︸

≤0

)x3 + (−1− ∆
︸ ︷︷ ︸

≤0

)x4 + (− 1
2 +

1
2 ∆

︸ ︷︷ ︸

≤0

)x6 + (−∆)
︸ ︷︷ ︸

≤0

x7

−1 + 5∆ ≤ 0

−1− ∆ ≤ 0

− 1
2 + 1

2 ∆ ≤
0

−∆ ≤ 0

→

∆ ≤ 1
5

−1 ≤ ∆

∆ ≤ 1

0 ≤ ∆

→ 0 ≤ ∆ ≤ 1
5 → for ∆ = 1

5 the bound is tight forx3

→ x3 disappears fromz→ enters the basis

Ratio test

Simplified procedure: compare coefficients of non-basic variables inz and inx7, choose smallest ratio

x3 : coeff−1x3 in z and5x3 in x7, ratio
1

5
= 0.2

x4 : coeff−1x4 in z and−1x4 in x7, no constraint
(negative coeff inx7)

x6 : coeff− 1
2 x6 in z and 1

2 x6 in x7, ratio
1
2
1
2

= 1

x1 = 20 + x3 − x4 − 1
2 x6

x2 = 60 − 2x3 + x4

x5 = 20 − x3 + x4 − 1
2 x6

x7 = −50 + 5x3 − x4 + 1
2 x6

z = 180 − 1x3 − x4 − 1
2 x6

ratio for x3:

1

5
= 0.2

(againwatch-out: we only consider this ratio because the coefficient ofx3 is positive)

54 CHAPTER 8. OTHER SIMPLEX METHODS

Smallest ratio1
5 for x3 → x3 enters

x7 = −50 + 5x3 − x4 +
1
2 x6

→ x3 = 10 + 1
5 x4 − 1

10 x6 +
1
5 x7

x1 = 30 − 4
5 x4 − 3

5 x6 + 1
5 x7

x2 = 40 + 3
5 x4 + 1

5 x6 − 2
5 x7

x3 = 10 + 1
5 x4 − 1

10 x6 + 1
5 x7

x5 = 10 + 4
5 x4 − 2

5 x6 − 1
5 x7

z = 170 − 6
5 x4 − 2

5 x6 − 1
5 x7

Shadow prices:

π1 = 0, π2 = 6
5 ,

π3 = 0, π4 = 1
5

optimal solution to
the Dual.
(Why?)

Solution is feasible (and dually feasible)→ optimal solution found.

Summary

Starting with adually feasiblesolution:

1. Find abasicvariablexi of negative value.
2. If no suchxi exists→ stop, the solution is feasible→ optimal solution found.
3. Ratio test: in the dictionary, in the equation forxi, find a non-basic variablexj such that

• xj appears withpositivecoefficienta in the equation forxi

• the ratio
c

a
is smallest possible (where−c is the coefficient ofxj in z)

4. If no suchxj exists→ stop, no feasible solution exists→ report that LP isInfeasible.
5. Pivot xj into the basis,xi leaves the basis.

(the resulting dictionary isguaranteedto be dually feasible)
6. Repeat.

8.2 Upper-Bounded Simplex

Back to the toy factory problem. Subsequent market survey revealed the maximum demand for trains to be50.

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1 ≤ 40
x2 ≤ 50

x1, x2 ≥ 0

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

0 ≤ x1 ≤ 40
0 ≤ x2 ≤ 50

introduce new (complementary)
variablesx′1, x′2:

x′1 = 40− x1

x′2 = 50− x2

0 ≤ x′1 ≤ 40
0 ≤ x′2 ≤ 50

We solve the problem as usual, but for each variable we keep track of either the variable or its complement but never
both. That is, the dictionary will either containx1 or x′1 but not both. Note that it is not necessary to keep both as one
can be derived from the other by a simple substitutionx′1 = 40− x1. In a way, we may think of having bothx1 and
x′1 in the dictionary but one of them ishidden.

We modify theratio test to account for these hidden variables. For illustration, let us solve the above.

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

z = 0 + 3x1 + 2x2

0 ≤ x3 ≤ ∞

0 ≤ x4 ≤ ∞

x1 increases to∆ ≥ 0 (enters)
variables change as follows:

x1 = ∆

x3 = 80− ∆

x4 = 100− 2∆

0 ≤ x1 ≤ 40
0 ≤ x3 ≤ ∞

0 ≤ x4 ≤ ∞

0 ≤ ∆ ≤ 40
0 ≤ 80− ∆ ≤ ∞

0 ≤ 100− 2∆ ≤ ∞

∆ ≤ 40

∆ ≤ 80
1 = 80

∆ ≤ 100
2 = 50

Most restrictive constrained imposed by the upper bound onx1 → we replacex1 by x′1 = 40− x1.

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

z = 0 + 3x1 + 2x2

→
x3 = 80 − (40− x′1) − x2

x4 = 100 − 2(40− x′1) − x2

z = 0 + 3(40− x′1) + 2x2

→
x3 = 40 + x′1 − x2

x4 = 20 + 2x′1 − x2

z = 120 − 3x′1 + 2x2

8.3. LOWER BOUNDS 55

Ratio test

three possible types of constraints

(1) lower boundon a basic variables (x3, x4)→ usual ratio test, var with anegativecoeff of x1→ pivot
(2) upper boundon the entering variable (x1)→ replace the variable by its complementary (′) variable
(3) upper boundon a basic variable (see below)→ var with apositivecoeff of x1→ replace by′ var

x3 = 40 + x′1 − x2

x4 = 20 + 2x′1 − x2

z = 120 − 3x′1 + 2x2

x2 increased to∆, ratio test:

(1) x3 = 40− ∆ ≥ 0
x4 = 20− ∆ ≥ 0

(2) x2 = ∆ ≤ 50
(3) no constraint

x3 : ∆ ≤ 40
1 = 40

x4 : ∆ ≤ 20
1 = 20

x2 : ∆ ≤ 50

x4 leaves, we pivot

x4 = 20 + 2x′1 − x2

↓
x2 = 20 + 2x′1 − x4

x2 = (20 + 2x′1 − x4)
x3 = 40 + x′1 − (20 + 2x′1 − x4)
z = 120 − 3x′1 + 2(20 + 2x′1 − x4)

→
x2 = 20 + 2x′1 − x4

x3 = 20 − x′1 + x4

z = 160 + x′1 − 2x4

x′1 increased, ratio test:

(1) x3 = 20− ∆ ≥ 0
(2) x′1 = ∆ ≤ 40
(3) x2 = 20 + 2∆ ≤ 50

x3 : ∆ ≤ 20
1 = 20

x′1 : ∆ ≤ 40

x2 : ∆ ≤ 50−20
2 = 15

Most restrictive constraint imposed byx2

→ replace byx′2 = 50− x2

(50− x′2) = 20 + 2x′1 − x4

x3 = 20 − x′1 + x4

z = 160 + x′1 − 2x4

→
x′2 = 30 − 2x′1 + x4

x3 = 20 − x′1 + x4

z = 160 + x′1 − 2x4

x′1 increased, ratio test:

(1) x′2 : 30
2 = 15

x3 : 20
1 = 20

(2) x′1 : 40

(3) no constraint

x′2 leaves,x′1 enters

x′2 = 30− 2x′1 + x4

2x′1 = 30− x′2 + x4

x′1 = 15− 1
2 x′2 +

1
2 x4

x′1 = (15− 1
2 x′2 +

1
2 x4)

x3 = 20 − (15− 1
2 x′2 +

1
2 x4) + x4

z = 160 + (15− 1
2 x′2 +

1
2 x4) − 2x4

x′1 = 15 − 1
2 x′2 + 1

2 x4

x3 = 5 + 1
2 x′2 + 1

2 x4

z = 175 − 1
2 x′2 − 3

2 x4

optimal solution found
→ basic variables:x′1 = 15, x3 = 5
→ non-basic variables:x′2 = 0, x4 = 0

x1 = 40− x′1 = 25
x2 = 50− x′2 = 50
x3 = 5
x4 = 0

Note: Be careful when expressing the values of variables from the dictionary not to confuse the variables and their
complements. In the above,x′2 is non-basicand so its value iszero. However, this does not mean thatx2 is and in
fact, the value ofx2 is 50− x′2 = 50. In particular, observe that bothx2 andx′2 cannever be non-basic at the same
time (one of them is always positive). The fact that we don’t see a variable in the final dictionary does not mean its
value is zero.

8.3 Lower bounds

The above procedure allows us to also handle general lower bounds (other than0).

If a variablexi is constrained by boundsℓi ≤ xi ≤ ri whereℓi, ri are numbers, then we introduce a new variablexj and
substitutexi = (xj + ℓi). In the resulting problem, the variablexj is non-negative with an upper boundxj ≤ ri − ℓi.
(If ri = ∞, we don’t have an upper bound forxj.) We then solve the problem using the new variable, and then calculate
xi from the resulting value ofxj by takingxi = xj + ℓi.

Contractual obligations with a big retailer demand that at least 30 toy soldiers be produced.

56 CHAPTER 8. OTHER SIMPLEX METHODS

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

30 ≤ x1 ≤ 40
0 ≤ x2 ≤ 50

introducex5 to replacex1:

x1 = 30 + x5

0 ≤ x5 ≤ 10

Max 3(30 + x5) + 2x2

(30 + x5) + x2 ≤ 80
2(30 + x5) + x2 ≤ 100

0 ≤ x5 ≤ 10
0 ≤ x2 ≤ 50

Max 2x2 + 3x5 + 90
x2 + x5 ≤ 50
x2 + 2x5 ≤ 40

0 ≤ x5 ≤ 10
0 ≤ x2 ≤ 50

introduce complementary
variablesx′2, x′5:

x′2 = 50− x2

x′5 = 10− x5

0 ≤ x′2 ≤ 50
0 ≤ x′5 ≤ 10

Initial dictionary:

x3 = 50 − x2 − x5

x4 = 40 − x2 − 2x5

z = 90 + 2x2 + 3x5

→

→

x5 enters, ratio test:

(1) x3 : 50
1 = 50

x4 : 40
2 = 20

(2) x5 : 10
(3) no constraint

→

x5 replaced byx5 = 10− x′5
x3 = 40 − x2 + x′5
x4 = 20 − x2 + 2x′5
z = 120 + 2x2 − 3x′5

→

x2 enters, ratio test:

(1) x3 : 40
1 = 40

x4 : 20
1 = 20

(2) x2 : 50
(3) no constraint

→

→

x4 leaves,x2 = 20− x4 + 2x′5
x2 = 20 − x4 + 2x′5
x3 = 20 + x4 − x′5
z = 160 − 2x4 + x′5

→

x′5 enters, ratio test

(1) x2 : 20
1 = 20

(2) x′5 : 10

(3) x2 : 50−20
2 = 15

→

x′5 replaced byx′5 = 10− x5

x2 = 40 − x4 − 2x5

x3 = 10 + x4 + x5

z = 170 − 2x4 − x5

optimal solution:

x2 = 40, x3 = 10, x4 = 0, x5 = 0

calculatex1 from x5 → x1 = 30 + x5 = 30

→ x1 = 30
x2 = 40

solution of valuez = 170

8.4 Dual Simplex with Upper Bounds

Instead of selling via a retailer, we decided to ship directly to customers. This involves extra packaging step before
shipping requiring 3 sheets of cardboard per a toy soldier, and 4 sheets per a toy train.

Being a green company, we wish to minimize the amount of packaging material used. However, we also want to make
profit, namely at least$150. This leads to the following minimization problem.

Min 3x1 + 4x2

x1 + x2 ≤ 80 [carving]
2x1 + x2 ≤ 100 [finishing]
3x1 + 2x2 ≥ 150 [profit]

0 ≤ x1 ≤ 40
0 ≤ x2 ≤ 50

introducex′1, x′2 and
slack/excessx3, x4, x5

x′1 = 40− x1

x′2 = 50− x1

0 ≤ x′1 ≤ 40
0 ≤ x′2 ≤ 50

0 ≤ x3 ≤ ∞

0 ≤ x4 ≤ ∞

0 ≤ x5 ≤ ∞

Max z = −3x1 − 4x2

x3 = 80 − x1 − x2

x4 = 100 − 2x1 − x2

x5 = −150 + 3x1 + 2x2

z = 0 − 3x1 − 4x2

dictionary isdually feasible→ all coefficients inz are non-positive→ can use Dual Simplex method

first, we checkupper boundsof basic variables:x3 = 80 ≤ ∞, x4 = 100 ≤ ∞, x5 = −150 ≤ ∞→ OK

next, we checklower bounds: x3 = 80 ≥ 0, x4 = 100 ≥ 0, x5 = −150 6≥ 0→ not OK, must increasex5

x5 leaves,ratio test→ x1 :
3

3
= 1, x2 :

4

2
= 2 (compare coefficients inz and (positive coeffs) inx5)

take smallest→ x1 enters,x5 = −150 + 3x1 + 2x2 → x1 = 50− 2
3 x2 +

1
3 x5

8.5. GOAL PROGRAMMING 57

x1 = (50− 2
3 x2 +

1
3 x5)

x3 = 80 − (50− 2
3 x2 +

1
3 x5) − x2

x4 = 100 − 2(50− 2
3 x2 +

1
3 x5) − x2

z = 0 − 3(50− 2
3 x2 +

1
3 x5) − 4x2

→

x1 = 50 − 2
3 x2 + 1

3 x5

x3 = 30 − 1
3 x2 − 1

3 x5

x4 = 1
3 x2 − 2

3 x5

z = −150 − 2x2 − x5

checkupper bounds: x1 = 50 6≤ 40, x3 = 30 ≤ ∞, x4 = 0 ≤ ∞→ not OK, replacex1 by x1 = 40− x′1

(40− x′1) = 50 − 2
3 x2 + 1

3 x5

x3 = 30 − 1
3 x2 − 1

3 x5

x4 = 1
3 x2 − 2

3 x5

z = −150 − 2x2 − x5

→

x′1 = −10 + 2
3 x2 − 1

3 x5

x3 = 30 − 1
3 x2 − 1

3 x5

x4 = 1
3 x2 − 2

3 x5

z = −150 − 2x2 − x5

upper bounds:x′1 = −10 ≤ 40, x3 = 30 ≤ ∞, x4 = 0 ≤ ∞→ OK

lower bounds:x′1 = −10 6≥ 0, x3 = 30 ≥ 0, x4 = 0 ≥ 0→ not OK, must increasex′1

x′1 leaves, ratio test→ x2 =
2

(2/3)
= 3, x5 : no constraint(negative coefficient inx′1)→ x2 enters

x′1 = −10 + 2
3 x2 − 1

3 x5

2
3 x2 = 10 + x′1 +

1
3 x5

→ x2 = 15 + 3
2 x′1 +

1
2 x5

x2 = (15 + 3
2 x′1 +

1
2 x5)

x3 = 30 − 1
3 (15 + 3

2 x′1 +
1
2 x5) − 1

3 x5

x4 =
1
3 (15 + 3

2 x′1 +
1
2 x5) − 2

3 x5

z = −150 − 2(15+ 3
2 x′1 +

1
2 x5) − x5

x2 = 15 + 3
2 x′1 + 1

2 x5

x3 = 25 − 1
2 x′1 − 1

2 x5

x4 = 5 + 1
2 x′1 − 1

2 x5

z = −180 − 3x′1 − 2x5

upper bounds:x2 = 15 ≤ 50, x3 = 25 ≤ ∞, x4 = 5 ≤ ∞→ OK

lower bounds:x2 = 15 6≥ 0, x3 = 25 ≥ 0, x4 = 5 ≥ 0→ OK

}

=⇒ optimal solution found

values of variables: basicx2 = 15, x3 = 25, x4 = 5, non-basicx5 = 0, x′1 = 0 → x1 = 40− x′1 = 40

→ x1 = 40, x2 = 15 is optimal with valuez = −180

=⇒ Minimum amount of packaging required to make$150 of profit is 180 units.

8.5 Goal Programming

We consider again the (usual) toy factory production problem with two products,toy soldiersandtoy trains, with sale
prices$3 respectively$2, requiring 1 hour each in the carving shop, and 2 hours respectively 1 hour in the finishing
shop; the total hours being 80 and 100 respectively, as usual. Each toy soldier requires 3 units of packaging material,
and each toy train requires 4.

The company became non-profit and set itself several new goals.

Goal #1: not to produce more than 40 toy soldiers; only up to 40 can be sold at the price$3

Goal #2: make at least$140 of profit to pay workers wages

Goal #3: use at most130 units of packaging material; only this much is currently available

Each goal can be met individually, however trying to meet allthree at once may not be (and it is not) possible.Failure
to meet a goal carries apenalty, proportional to the amount by which the goal is not met.

Penalty #1: each toy soldier over 40 units will not be sold; penalty of$3 of missing profit

Penalty #2: any profit below$140 has to be obtained by borrowing at20% interest

Penalty #3: any missing packaging material has to be bought at$0.80 a unit

Our combinedgoal is tominimize thetotal penalty incured. This leads to the following:

58 CHAPTER 8. OTHER SIMPLEX METHODS

x1 + x2 ≤ 80 [Carving]
2x1 + x2 ≤ 100 [Finishing]

x1 ≤ 40 [Goal #1]
3x1 + 2x2 ≥ 140 [Goal #2]
3x1 + 4x2 ≤ 130 [Goal #3]

add−→
slack

x1 + x2 + x3 = 80
2x1 + x2 + x4 = 100

x1 + x5 = 40
3x1 + 2x2 − x6 = 140
3x1 + 4x2 + x7 = 130

Slack variablesx3 andx4 are assumed to be always non-negative; the come fromhard constraints – must be satisfied
unconditionally. On the other hand, we can allowx5, x6, andx7 to be unrestricted, since the corresponding constraints
aresoft – we may violate any of them, but we incur a penalty.

Depending on whether each ofx5, x6, x7 is positive or negative, we incur different penalties. For instance, ifx5 is
positive, there is no penalty, the penalty is 0; ifx5 is negative, the penalty is−3x5, since we lose $3 for each unsold
toy soldier (there is “minus” in penalty becausex5 is negative, not because we lose profit).

Similarly, if x6 is positive, the penalty is 0, while ifx6 is negative, the penalty is−1.2x6, since if profit drops below
$140, to pay the workers we have borrow at 20% interest. Note that we can specify different penalties for both positive
and negative slack (not necessarily only zero) and the method works the same way.

The question now is:how do we formulate this problem as a linear program?

We express each of the variablesx5, x6, x7 as adifferenceof two non-negativevariables. Namely we writex5 asx5 =
x+5 − x−5 wherex+5 andx−5 are new non-negative variables. Similary we writex6 = x+6 − x−6 andx7 = x+7 − x−7 . As
we discussed at the beginning of the course, under some assumptions, the values of these new variables (in an optimal
solution) will be precisely the positive/negative parts ofthe variablesx5, x6, x7.

This allow us toconstruct an objective function that captures the sum of all the penalties that we incur in different
situations (depending on the signs of the variablesx5, x6, x7).

x5 = x+5 − x−5
x6 = x+6 − x−6
x7 = x+7 − x−7

x+5 , x−5 , x+6 , x−6 , x+7 , x−7 ≥ 0

min 3x−5 + 1.2x−6 + 0.8x−7
x1 + x2 + x3 = 80

2x1 + x2 + x4 = 100
x1 + x+5 − x−5 = 40

3x1 + 2x2 − x+6 + x−6 = 140
3x1 + 4x2 + x+7 − x−7 = 130

We solve this problem using standard methods (Simplex method or Dual Simplex method). Alternatively, we can
solve the dual and from that construct a solution to this problem.

Exercise.Construct the dual LP to the above problem.

9
Transportation Problem

Historical note
The problem and its solution described first in 1941 by Hitchcock – predates the Simplex Method – independently
discovered by Koopmans during World War II used to minimize shipping times for cargo ships – the method spear-
headed research on linear and non-linear programs in economics. The Assignment problem (a special case of the
Transportation Problem) can be solved more efficiently using the Hungarian Method, found in the work of Egerváry
in 1931 and first explicitely described in 1955 by Kuhn who named it the Hungarian Method; recently it was found
that the method was actually first found a century earlier by Jacobi in the context of solving systems of ordinary
differential equations (work published posthumously in 1890). Since then, more efficient (but more complicated)
algorithms have been found for the two problems.

...
...

c11

c12

c1n

c21

c22

c2n

cm1

cm2

cmn

a1

a2

am

b1

b2

bn

S
O
U
R
C
E
S

D
E
S
T
I
N
A
T
I
O
N
S

In the transportation problem, we have

– m sources(warehouses, factories) producing items, and
– n destinations(shops, businesses) requiring these items.

The items need to betransported from sources to destinations which has
associated cost.

The goal is tominimize the totalcostof transportation .

– Thei-th source hasai available items
– Thej-th destinationdemandsbj items to be delivered.
– It costscij to deliver one item fromi-th source toj-th destination.

Assumption: destinations do not care from which source the items come,
and sources do not care to which destinations they deliver.

Decision variables:xij = the number of items transported from thei-th source toj-th destination

Minimize
m

∑
i=1

n

∑
j=1

cijxij Balanced Transportation Problem

subject to
n

∑
j=1

xij = ai for i = 1, . . . , m [i-th sources hasai available items]

m

∑
i=1

xij = bi for j = 1, . . . , n [j-th demandsbi items]

xij ≥ 0 for i = 1, . . . , m andj = 1, . . . , n [non-negative amounts transported]

A solution exists if and only if

total supply
︷ ︸︸ ︷
m

∑
i=1

ai =

total demand
︷ ︸︸ ︷

n

∑
i=1

bi (the total supply is equal to the total demand)

59

60 CHAPTER 9. TRANSPORTATION PROBLEM

Why equalities? If the total supply is bigger than the total demand by∆ > 0, then we introduce adummydestination
with demand∆ and withzero costof transportation from all sources. If the total demand is bigger than the total supply
by ∆ > 0, thenno feasible solutionexists. However, we can still model theshortageby introducing adummysource
with supply∆ and some the costs of transportation (say zero).

Example

A furniture company owns three warehouses in the New York City area and needs to deliver chairs to its three shops in
the city for tomorrow. The three shops demand 4, 2, and 3 unitsrespectively. Current stock level of chairs in the three
warehouses is 8, 6, and 3 respectively. Delivery costs from each warehouse to each store are different due to different
distances. These are as follows (in $ per unit).

Delivery
costs:

Shop #

Warehouse #1 $7 $3 $4

Warehouse #2 $4 $2 $2

Warehouse #3 $2 $1 $5

Demand:

Shop #1: 4 units
Shop #2: 2 units
Shop #4: 3 units

Supply:

Warehouse #1: 8 units
Warehouse #2: 6 units
Warehouse #3: 3 units

Find the least expensive way to deliver the chairs to the stores.

Total Demand: 9 units

Total Supply: 17 units

}

Solution exists, since total supply is at least the total demand. The excess supply
of 8 units will be assigned to adummy destinationat zero cost.

Delivery
costs:

Shops #

Warehouse #1 $7 $3 $4 $0

Warehouse #2 $4 $2 $2 $0

Warehouse #3 $2 $1 $5 $0

Demand:

Shop #1: 4 units
Shop #2: 2 units
Shop #4: 3 units
Dummy: 8 units

Supply:

Warehouse #1: 8 units
Warehouse #2: 6 units
Warehouse #3: 3 units

Min 7x11 + 3x12 + 4x13 + 0x14 + 4x21 + 2x22 + 2x23 + 0x24 + 2x31 + 1x32 + 5x33 + 0x34

s.t. x11 + x12 + x13 + x14 = 8
x21 + x22 + x23 + x24 = 6

x31 + x32 + x33 + x34 = 3

x11 + x21 + x31 = 4
x12 + x22 + x32 = 2

x13 + x23 + x33 = 3
x14 + x24 + x34 = 8

all variables non-negative
9.1 Transportation Simplex Method

Tableau form:

c11

x11

c12

x12

c13

x13

c14

x14

u1

a1

c21

x21

c22

x22

c23

x23

c24

x24

u2

a2

c31

x31

c32

x32

c33

x33

c34

x34

u3

a3

v1

b1

v2

b2

v3

b3

v4

b4
z =?

7 3 4 0 u1

8

4 2 2 0 u2

6

2 1 5 0 u3

3

v1

4
v2

2
v3

3
v4

8

Shadow prices
– u1, u2, u3 for the first three constraints (supply constraints),
– v1, v2, v3, v4 for the latter four constraints (demand constraints)

9.1. TRANSPORTATION SIMPLEX METHOD 61

Initialization

We need to find a startingbasic feasible solution. One method is theMinimum-cost rule:

1. If the tableau has only 1 row, then for every variablexij: setxij = bj, and addxij to the basis; then stop.
2. Otherwise find a variablexij of smallest costcij.
3. If ai ≤ bj, then setxij = ai, addxij to the basis, remove thei-th row, and decreasebj to bj − ai.
4. If ai > bj, then setxij = bj, addxij to the basis, remove thej-th column, and decreaseai to ai − bj.
5. Repeat.

7

✗
3

✗
4

✗
0

8

u1

8✗

4 2 2 0 u2

6

2 1 5 0 u3

3

v1

4
v2

2
v3

3
v4

8✗ 0

→

7

✗
3

✗
4

✗
0

8
u1

8✗

4 2 2 0

✗
u2

6

2 1 5 0

0

u3

3✗ 3

v1

4
v2

2
v3

3
v4

8✗ 0✗

→

7

✗
3

✗
4

✗
0

8
u1

8✗

4 2

✗
2 0

✗
u2

6

2 1

2

5 0

0
u3

3✗ 1

v1

4
v2

2✗
v3

3
v4

8✗ 0✗

→

7

✗
3

✗
4

✗
0

8
u1

8✗

4

3
2

✗
2

3
0

✗
u2

6✗ 3✗

2

1
1

2

5

✗
0

0
u3

3✗ 1✗

v1

4✗
v2

2✗
v3

3✗
v4

8✗ 0✗

Basic Feasible Solutions

The problem withm sources andn destinations hasm × n variables andm + n constraint. The constraints arenot
independent, but eachm + n− 1 of them are. This implies thefundamental property:

– everybasiscontainsexactly m + n− 1 variables,
– eachconstraint containsat leastonebasicvariable.

We mark all cellsthat correspond to thebasic variables.

– the table will containm + n− 1 marked cells
– every unmarked cell has value zero
– each row contains at least one marked cell
– each column contains at least one marked cell
– consequently:there always exists a row or

column withexactly onemarked cell.

7 3 4 0

8

u1

8

4

3

2 2

3

0 u2

6

2

1

1

2

5 0

0

u3

3

v1

4
v2

2
v3

3
v4

8
z = 22

Shadow prices
Economic interpretation: (−ui) = price of chair in thei-th warehouse

vj = sale price of chair in thej-th shop.

Optimality criterion: the current solution is optimal if foreverywarehousei andeveryshopj
thecost of transportation is more than (or equal to) thedifference in prices, i.e., if cij ≥ vj + ui

How to determine shadow prices?

If xij is basic, then we break even when transporting fromi-th source toj-th destination, i.e., ifcij = vj + ui (we have
no incentiveincreasingor decreasingthe transported amount, since that does not change our profit).

62 CHAPTER 9. TRANSPORTATION PROBLEM

This yieldsm + n− 1 equations overm + n variablesu1, . . . , um, v1, . . . , vn. This is anunderdetermined system.
Since we are only interested in pricedifferences, we may simply assume that one of the shadow prices is zero. With
that, the system will have a solution which will give us the shadow prices we are interested in.Instead of writing
down and solving the system, we find shadow pricesdirectly .

Setui = 0 for somei ∈ {1, . . . , m}. Then repeat the following until all shadow prives have beendetermined.

– Findi such thatui has been determined→ for every basic variablexij, setvj = cij − ui.
– Find j such thatvj has been determined→ for every basic variablexij, setui = cij − vj.

We choose to start by assigningu2 = 0.

7 3 4 0

8

u1

8

4

3

2 2

3

0 0

6

2

1

1

2

5 0

0

u3

3

4

4
v2

2
2

3
v4

8

→

7 3 4 0

8

u1

8

4

3

2 2

3

0 0

6

2

1

1

2

5 0

0

−2

3

4

4

v2

2
2

3
v4

8

7 3 4 0

8

u1

8

4

3

2 2

3

0 0

6

2

1

1

2

5 0

0

−2

3

4

4
3

2
2

3
2

8

→

7
2

3
1

4
0

0

8

−2

8

4

3
2

3

2

3
0

2

0

6

2

1

1

2
5

0

0

0

−2

3

4

4
3

2
2

3
2

8

We price out non-basic variables by takingui + vj (the value in blue) for every non-basicxij. This value represents
theprice differencebetweeni-th warehouse andj-th shop. If this value ismore than the corresponding trasportation
costcij, then it pays to makexij basic, i.e., transport items fromi-th warehouse toj-th shop, since the net profit is
positive. Such variable isx22, sincec22 = 2 andu2 + v2 = 3.

Pivoting to a new basis

We increasex22 to ∆ > 0 and need to find out which variable leaves the basis. This is done by finding aloop (a cycle,
circuit) in the tableau: starting fromx22, choosing basic variables in turn, either from the same row,or same column
where we alternate between rows and columns, and coming backto x22.

7 3 4 0

8

−2

8

4

3

2

∆

2

3

0 −4

6

2

1

1

2 −∆
5 0

0

−2

3

0

4
3

2
6

3
2

8

−∆

+∆

We increasex22 to ∆. Since to total value in column 2 must be
exactly2, we decreasex32 from 2 to 2− ∆. This decreases the
total value in row 3 by∆, so we compensate by increasingx31

from 1 to 1 + ∆. Then the total in column 1 increases, so we
decreasex21 from 3 to 3− ∆. Finally, all row and column totals
are back in order.

Largest value∆ for which all current basic variables are non-
negative is∆ = 2; for this value,x32 decreases to 0, leaves the
basis, andx22 enters the basis.

How to find the loop? Make the entering variable basic (circle it in the tableau).Then cross out every basic variable
that belongs a row or column which has no other basic variable(or has other basic variables, but they all have been
crossed out). Repeat as long as possible. What remains is thedesired loop.

9.1. TRANSPORTATION SIMPLEX METHOD 63

7 3 4 0

8✗
−2

8

4

3

2

∆

2

3✗
0 −4

6

2

1

1

2

5 0

0

−2

3

0

4
3

2
6

3
2

8

→

7 3 4 0

8✗
−2

8

4

3

2

∆

2

3✗
0 −4

6

2

1

1

2

5 0

0✗
−2

3

0

4
3

2
6

3
2

8

After pivoting, we obtain the following tableau. We calculate the shadow prices, and price out cells

7 3 4 0

8

u1

8

4

1

2

2

2

3

0 u2

6

2

3

1 5 0

0

u3

3

v1

4
v2

2
v3

3
v4

8
z = 20

→

7
2

3
0

4
0

0

8

−2

8

4

1

2

2

2

3
0

2

0

6

2

3
1

0
5

0

0

0

−2

3

4

4
2

2
2

3
2

8
z = 20

→ x24 enters the basis, increased to∆, largest∆ = 0 whenx34 leaves the basis.

7 3 4 0

8✗
−2

8

4

1 −∆

2

2✗
2

3✗
0

∆

0

6

2

3 +∆
1 5 0

0 −∆
−2

3

4

4
2

2
2

3
2

8
z = 20

→

7
4

3
2

4
2

0

8

0

8

4

1

2

2

2

3

0

0

0

6

2

3
1

0
5

0
0

−2

−2

3

4

4
2

2
2

3
0

8
z = 20

Optimal solution found.
x21 = 1, x22 = 2, x23 = 3, x31 = 3.

Conclusion: Least costly way to deliver the chairs to stores is to deliverno chairs from warehouse #1, deliver 1, 2,
and 3 chairs from warehouse #2 to shops #1, #2, and #3 respectively, and in addition deliver 3 chairs from warehouse
#3 to shop #1. The total transportation cost is$20.

Assignment Problem

We havem machines that we want to assignedn jobs. Machines are different and to execute jobj on machinei
requirescij resources (time, space, energy). We want to minimize total amount of resources used.

We can model it as a Transportation Problem withm sources–machines,n destinations–jobs, costscij, each demand
ai equal to 1, and each available supplybj also equal 1. By adding dummy machines and jobs, we may assumethat
n = m. We may solve the problem using the standard (Simplex) method for the Transportation problem. This is
unfortunately not very efficient, sinceevery basisof the corresponding LP containsn− 1 degeneratebasic variables.
That is why specialized algorithms, such as the Hungarian Method, exist for the Assignment Problem.

Transshipment Problem

A generalization of the Transportation Problem where we mayship some items via several intermediate (transship-
ment) locations. We can model it as an ordinary Transportation Problem bytreating each intermediate node asboth
a source and a destination (it appears twice in the tableau);its demand is equal to its supply (equal to its storage
capacity), and has zero transportation cost between itself.

64 CHAPTER 9. TRANSPORTATION PROBLEM

Warehouse #1

Warehouse #2

Transshipment
point #1

Transshipment
point #2

Shop #1

Shop #2

c11

c21

c22

c23

c33

c34

c44

Transportation costs matrix:

c11 ∞ ∞ ∞ Warehouse
#1

c21 c22 c23 ∞ Warehouse
#2

0 ∞ c33 c34
Transship

#1

∞ 0 ∞ c44
Transship

#2

Transship
#1

Transship
#2

Shop #1 Shop #2

10
Network problems

Historical note
The Shortest Path Problem is one of the most important efficient computational tools at our disposal. It is used every-
where, from GPS navigation and network communication to project management, layout design, robotics, computer
graphics, and the list goes on. Often many problems reduce tofinding shortest paths or use shortest paths as guidelines
to optimal solutions. First algorithms for the Shortest Path problem were designed by Ford (1956), Bellman (1958),
and Moore (1959). For non-negative weights, a more efficientalgorithm was first suggested by Dijkstra (1959). Since
then, many improved and specialized algorithms have been developed, with close to linear running time. For instance,
in the context of navigation, current record holder is the Hub labelling algorithm (2011), which uses precomputed
distances from carefully chosen nodes–hubs to speed up pathfinding on maps from hours to tenths of microseconds.
For All-pairs Shortest Path problem the first algorithms were founds by Shimbel (1953), and by Roy (1959), Floyd
(1962), and Warshall (1962). A more efficient approach is a combination of Dijkstra’s and Bellman-Ford’s algorithms
known as Johnson’s algorithm (1977).
The Minimum Spanning Tree problem also has a rich history. The first known algorithm was developed by Borůvka
(1926) for efficient distribution of electicity. Later independently discovered by many researchers over the years:
Jarnı́k (1930), Kruskal (1956), Prim (1957), and Dijkstra (1959). All are based on similar ideas and have very efficient,
almost linear-time implementations. There also exist efficient parallel and distributed implementations. The latteris
notably used in minimum spanning tree protocols found frequently in routing broadcast/multicast communication in
computer and wireless networking.

G = graph or network consists of

– a setV of vertices(nodes, points) and
– a setE of edges(arcs, lines) which are connections between vertices.

write G = (V, E); write V(G) for vertices ofG, andE(G) for edges ofG.

(vertices are usually denotedu or v with subscripts; edges we usually denotee)

edges may havedirection: an edgee betweenu andv may go fromu to v, we writee = (u, v),

2

5

1

3

2

1

2

1

2

3

4

5

6

verticesV = {1, 2, 3, 4, 5, 6}
edgesE =

{

(1, 2), (1, 3), (2, 5), (4, 2),

(4, 6), (5, 3), (5, 6)
}

weights c(1, 2) = 2 c(1, 3) = 5
c(2, 5) = 1 c(4, 2) = 3 c(4, 6) = 2
c(5, 3) = 1 c(5, 6) = 2

2

5

1

3

2

1

2

1

2

3

4

5

6

Figure 10.1: network (left), undirected network (right), edges(1, 2), (2, 5), (3, 5), (5, 6) form a tree of weight5

65

66 CHAPTER 10. NETWORK PROBLEMS

or from v to u, we writee = (v, u)

(if an edgee does not have a direction, we treat it the same way as having both directions)

if all edges do not have a direction (are undirected), we say that the network isundirected

edges may haveweight: a weight of edgee = (u, v) is a real number denotedc(e) or c(u, v), ce, cuv

a sequence of nodes and edgesv1, e1, v2, e2, . . . vk−1, ek, vk is

– apath (directed path) if eachei goes fromvi to vi+1

– achain (undirected path) if eachei connectsvi andvi+1 (in some direction)

(often we write:e1, e2, . . . , ek is a path (we omit vertices) or write:v1, v2, . . . , vk is a path (we omit edges))

a network isconnectedif for every two nodes there is a path connecting them; otherwise it isdisconnected

a cycle(loop, circuit) is a path starting and ending in the same node, never repeating any node or edge

a forest (acyclic graph) is an undirected graph that contains no cycles

a tree is a connected forest

Claim: A tree withn nodes contains exactlyn− 1 edges. Adding any edge to a tree creates a cycle.
Removing any edge from a tree creates a disconnected forest.

10.1 Shortest Path Problem

Given a networkG = (V, E) with two distinguished verticess, t ∈ V, find a shortest path froms to t

Example: In Figure 1 (left), a shortest path froms = 1 to t = 6 is 1, 2, 5, 6 of total length5, while for t = 3 a shortest
path is1, 2, 5, 3 of length4. We say thatdistancefrom node1 to node6 is 5. Note that there is no path froms to
t = 4; we indicate this by defining the distance to4 as∞.

LP formulation: decision variablesxij for each(i, j) ∈ E

Min ∑
(i,j)∈E

wijxij

∑
j:(i,j)∈E

xij − ∑
j:(j,i)∈E

xji =







1 if i = s
−1 if i = t
0 otherwise

for eachi ∈ V

xij ∈ {0, 1} for each(i, j) ∈ E

Modeling

A new car costs$12, 000. Annual maintenance costs are as follows:m1 = $2, 000 first year,m2 = $4, 000 second
year,m3 = $5, 000 third year,m4 = $9, 000 fourth year, andm5 = $12, 000 fifth year and on. The car can be sold
for s1 = $7, 000 in the first year, fors2 = $6, 000 in the second year, fors3 = $2, 000 in the third year, and for
s4 = $1, 000 in the fourth year of ownership.

An existing car can be sold at any time and another new car purchased at$12, 000. What buying/selling strategy for
the next 5 years minimizes the total cost of ownership?

Nodes ={0, 1, 2, 3, 4, 5}
Edge(i, j) represents the act of buying a car in yeari and selling in
yearj. The weight is the price difference plus the maintanence cost,
i.e., the weight is

c(i, j) = $12, 000− s(i−j) + m1 + m2 + . . . + m(i−j)

Answer: the length of a shortest path from node0 to node5.

7 7 7 7 7

12

12

12

12

21

21

21

31

31

44

0 1

2

3

4

5

$31, 000

10.1. SHORTEST PATH PROBLEM 67

A company wants to introduce a new model of its ever-popularcell phoneto the market. To gauge the demand, a
limited batch of product is to be brought to the market. The product is assembled from two parts, a circuit board, and
housing. In addition, workers need to be trained and raw material procured.

After the initial assesment, the project manager put together a list of all tasks along with estimated duration of each
task. The tasks are interdependent, some need to finish before others can start. First, (A) workers need to be trained
and (B) raw materials purchased which takes 6 and 9 days, respectivelly. After these tasks are finished, both parts
of the product, (C) the circuit board and (D) the housing, aremanufactured taking 7 and 8 days, respectively. Each
circuit board, once manufactured, needs to undergo additional testing (E) to comply with FCC regulation which takes
10 days. Afterwards, the cell phone is assembled, packaged,and shipped (F) which takes 12 days.

What is the minimum number of days before the product can reach the market? What is thecritical path of the
production, i.e., the sequence of tasks delaying any of which delays the whole production ?

We identify main check-points:
(1) start, (2) completion of tasks A and B,
(3) completion of task D, (4) completion of tasks C,E,
and (5) finish.

Nodes{1, 2, 3, 4, 5}
Edges correspond to tasks that connect checkpoints, weights are
durations with negative sign.

Answer: A shortest path from1 to 5 is a critical path.

−6

A

−9
B

−8

C

−7 D −10E

−12

F

1 2

3

4 5

−38
(38 days = least time to hit the market)

Dijkstra’s algorithm

Algorithm finds the length of a shortest path froms to every vertex ofG (not onlyt)

Weights of edges are assumed to benon-negative, else the algorithm may output incorrect answer.

variables: du for eachu ∈ V, anestimateon the distance froms to u

initialize : du =

{
0 if u = s
∞ otherwise

all vertices are initiallyunprocessed

1. Find anunprocessedvertexu with smallestdu

2. For each(u, v) ∈ E, updatedv = min{dv, du + cuv}
3. Marku as processed; repeat until all vertices are processed.
4. Reportdt as distance froms to t

Example:
a

b

c

d

s t

2

5

1

3

2

1

2

0

∞

∞

∞

∞

∞

Step# s a b c d t
1. 0 ∞ ∞ ∞ ∞ ∞

2 5

2. 0∗ 2 5 ∞ ∞ ∞

3

3. 0∗ 2∗ 5 ∞ 3 ∞

4 5

4. 0∗ 2∗ 4 ∞ 3∗ 5
5. 0∗ 2∗ 4∗ ∞ 3∗ 5
6. 0∗ 2∗ 4∗ ∞ 3∗ 5∗

final 0∗ 2∗ 4∗ ∞∗ 3∗ 5∗

Step
#1 a

b

c

d

s t

2

5

1

3

2

1

2

0

∞✗ 2

∞✗ 5

∞

∞

∞

a

b

c

d

s t

2

5

1

3

2

1

2

0

2

5

∞

∞

∞

Step
#2 a

b

c

d

s t

2

5

1

3

2

1

2

0

2

5

∞

∞✗ 3

∞

68 CHAPTER 10. NETWORK PROBLEMS

Step
#3 a

b

c

d

s t

2

5

1

3

2

1

2

0

2

5✗ 4

∞

3

∞✗ 5

Step
#4 a

b

c

d

s t

2

5

1

3

2

1

2

0

2

4

∞

3

5

Final
result a

b

c

d

s t

2

5

1

3

2

1

2

0

2

4

∞

3

5

Can be augmented to actually find a shortest path.

2′ For each(u, v) ∈ E, if dv > du + wuv, thendv = du + wuv and setpv = u.

For the above example, we have:

p1 = unde f ined, p2 = 1, p3 = 5, p4 = unde f ined, p5 = 2, p6 = 5.

We can depict this by marking the edge frompu to u for eachu ∈ V.
(the picture on right). Note that the edges we marked form a tree.

A shortest path from1 to 6 is found backwards by taking6, p6, pp6 ,
The path this yields is1, 2, 5, 6, since5 = p6, 2 = p5, and1 = p2.

2

5

1

3

2

1

2

1

2

3

4

5

6

10.2 Minimum Spanning Tree

A power company delivers electricity from its power plant toneighbouring cities. The cities are interconnected by
power lines operated by various operators. The power company wants to rent power lines in the grid of least total cost
that will allow it to send electricity from its power plant toall cities.

Given an undirected networkG = (V, E) find a collectionF ⊆ E of minimum weight so that(V, F) is a tree.

(we say that(V, F) is aspanning tree because it spans all vertices)

Example: The tree in Figure 1 (right) is not spanning because it does not contain the vertex 4. Adding the edge(2, 4)
yields a spanning tree of weight8, while adding the edge(4, 6) yields a spanning tree of weight7. Note that adding
the edge(1, 3) is not possible, for it creates a cycle1, 2, 5, 3 which is not allowed in a tree.

Kruskal’s (Prim’s) algorithm

initialize: F to be empty; all edges are initiallyunprocessed

Kruskal’s algorithm:

1. Find an unprocessed edgee of smallest weightwe.
2. If (V, F ∪ {e}) is a forest, then adde to F.
3. Marke as processed and repeat until all edges have been processed.
4. Report(V, F) as a minimum-weight spanning tree.

Prim’s algorithm: replace 1 by1′

1′ Find an unprocessed edgee of smallest weight that shares an endpoint with some edge inF

2

5

1

3

2

1

2

2

5

1

3

2

1

2

2

5

1

3

2

1

2

2

5

1

3

2

1

2

10.3. MAXIMUM FLOW PROBLEM 69

2

5

1

3

2

1

2

2

5

1

3

✗ 2

1

2

2

5

✗
1

3

2

1

2

2

5

1

3

2

1

2

10.3 Maximum Flow problem

A delivery company runs a delivery network between major US cities. Selected cities are connected by routes as
shown below. On each route a number of delivery trucks is dispatched daily (indicated by labels on the corresponding
edges). A customer is interested in hiring the company to deliver his products daily from Denver to Miami, and needs
to know how much product can be delivered on a daily basis.

Denver

Chicago New York

Houston Miami

2

1

2

1
1

3

maximize z

−xDC−xDH =−z
xDC −xCH−xCN = 0

xDH+xCH −xHM = 0
xCN−xNM = 0

xNM+xHM = z
︸ ︷︷ ︸

conservation of flow

0 ≤ xDC ≤ 2
0 ≤ xDH ≤ 1
0 ≤ xCH ≤ 1
0 ≤ xCN ≤ 2
0 ≤ xNM ≤ 1
0 ≤ xHM ≤ 3

In general, networkG = (V, E):

s = source(Denver) uij =capacityof an edgeij (# trucks dispatched daily betweeni andj)

t = sink (Miami) xij =flowon an edgeij (# trucks delivering the customer’s products)

max z

∑
j∈V
ji∈E

xji

︸ ︷︷ ︸

flow into i

− ∑
j∈V
ij∈E

xij

︸ ︷︷ ︸

flow out of i

=







−z i = s
z i = t
0 otherwise

0 ≤ xij ≤ uij for all ij ∈ E

Ford-Fulkerson algorithm

Initial feasible flowxij = 0 for all ij ∈ E.

A sequence of nodesv1, v2, . . . , vn is achain if vivi+1 ∈ E (forward edge) orvi+1vi ∈ E (backwardedge) for all
i = 1, . . . , n− 1. If v1 = s andvn = t, then we call it an(s, t)-chain. Consider an(s, t)-chainP.

The residual capacityof a forward edgeij on P is defined asuij − xij (the remaining capacity on the edgeij). The
residual capacityof a backward edgeij on P is defined asxij (the used capacity of the edgeij).
Theresidual capacityof P is theminimum taken over residual capacities of edges onP.

If the residual capacityof P is positiveε > 0, thenP is anaugumenting chain. If this happens, we can increase the
flow by increasing the flow on all forward edges byε, and decreasing the flow on all backward edges byε. This yields
a feasible flow of larger valuez + ε. (Notice the similarity with the Transportation Problem and the ratio test in the
Simplex Method – same thing in disguise.)

Optimality criterion: The flowxij is optimal if and only if there is no augmenting chain.

70 CHAPTER 10. NETWORK PROBLEMS

Residual network

Finding an augmenting chain efficiently→ residual networkGx constructed as follows:

– start by makingV the nodes ofGx (no edges yet)
– then for every edgeij ∈ E,

(a) add edgeij to Gx if xij < uij

(b) add edgeji to Gx if xij > 0
(if both happen then the residual network contains both the edgeij andji)

Any path from s to t in the residual network is an augmenting chain.

Starting feasible flowxij = 0 (indicated in boxes) → residual network (residual capacity shown on edges)

Denver

Chicago New York

Houston Miami

0
2

0 1

0

2

0 1

0
1

0

3

Denver

Chicago New York

Houston Miami

2

1

2

1

1

3

augmenting chain of residual capacity 1→ increase flow by 1

Denver

Chicago New York

Houston Miami

0
2

0 1

0

2

0 1

1
1

1

3

Denver

Chicago New York

Houston Miami

2

1

1

2

1

2

1

augmenting chain of residual capacity 1→ increase flow by 1

Denver

Chicago New York

Houston Miami

1
2

0 1

1

2

1 1

1
1

1

3

Denver

Chicago New York

Houston Miami

1

1

1

1

1

1

1

2

1

augmenting chain of residual capacity 1→ increase flow by 1

Denver

Chicago New York

Houston Miami

2
2

1 1

1

2

1 1

1
1

2

3

Denver

Chicago New York

Houston Miami

2

1

1

1

1

1

1

2

10.3. MAXIMUM FLOW PROBLEM 71

no path from Denver to Miami in the residual network→ no augmenting chain→ optimal solution found

→ maximum flow has value 3

Minimum Cut
For a subset of verticesA ⊆ V, the edges going between the nodes inA and the rest of the graph is called acut. We
write (A, A) to denote this cut. The edges going out ofA are calledforward edges, the edges coming intoA are
backward edges. If A containss but nott, then it is an(s, t)-cut.

Thecapacityof a cut(A, A) is the sum of the capacities of its forward edges.

For example, letA = {Denver,Chicago}. Then(A, A) is an(s, t)-cut of capacity 4. Similarly, letA∗ = {Denver,
Chicago, New York}. Then(A∗, A∗) is an(s, t)-cut of capacity 3.

Theorem 5. The maximum value of an(s, t)-flow is equal to the minimum capacity of an(s, t)-cut.

This is known as the Max-Flow-Min-Cut theorem – a consequence of strong duality of linear programming.

maximize z

−xDC−xDH =−z
xDC −xCH−xCN = 0

xDH+xCH −xHM = 0
xCN−xNM = 0

xNM+xHM = z

0 ≤ xDC ≤ 2
0 ≤ xDH ≤ 1
0 ≤ xCH ≤ 1
0 ≤ xCN ≤ 2
0 ≤ xNM ≤ 1
0 ≤ xHM ≤ 3

Dual:

minimize 2vDC + vDH + vCH + 2vCN + vNM + 3vHM

yD − yC ≤ vDC

yD − yH ≤ vDH

yC − yH ≤ vCH

yC − yN ≤ vCN

yN − yM ≤ vNM

yH − yM ≤ vHM

yD − yM ≥ 1

vDC, vDH, vCH, vCN, vNM, vHM ≥ 0
yD, yC, yH, yN, yM unrestricted

Optimal solution (of value3)

yD = yC = yN = 1 → A = {D, C, N}
yH = yM = 0 min-cut

vDH = vCH = vNM = 1
vDC = vCN = vHM = 0

→ given an optimal solution, letA be the nodes whosey
value is the same as that of source
→ (A, A) minimum cut

Denver

Chicago New York

Houston Miami

2
2

1 1

1

2

1 1

1
1

2

3

1

1 1

0 0

0
2

1 1

0

2

1 1

1
1

0

3
maximum flow minimum cut

max z

∑
j∈V
ji∈E

xji − ∑
j∈V
ij∈E

xij =







−z i = s
z i = t
0 otherwise

0 ≤ xij ≤ uij for all ij ∈ E

min ∑
ij∈E

uijvij

yi − yj ≤ vij for all ij ∈ E

ys − yt ≥ 1

vij ≥ 0 for all ij ∈ E
yi unrestricted for alli ∈ V

72 CHAPTER 10. NETWORK PROBLEMS

10.4 Minimum-cost Flow problem

A delivery company runs a delivery network between major US cities. Selected cities are connected by routes as
shown below. On each route a number of delivery trucks is dispatched daily (indicated by labels on the corresponding
edges). Delivering along each route incurs a certain cost (indicated by the $ figure (in thousands) on each edge). A
customer hired the company to deliver two trucks worth of products from Denver to Miami. What is the least cost of
delivering the products?

Denver

Chicago New York

Houston Miami

2
$5

1
$3

1$4

2
$3

1$4

3
$5

(2)

(0) (0)

(0) (−2)

minimize
5xDC + 3xDH + 4xCH + 3xCN + 4xNM + 5xHM

xDC+xDH = 2
−xDC +xCH+xCN = 0

−xDH−xCH +xHM = 0
−xCN+xNM = 0

−xNM−xHM =−2
︸ ︷︷ ︸

conservation of flow

0 ≤ xDC ≤ 2
0 ≤ xDH ≤ 1
0 ≤ xCH ≤ 1
0 ≤ xCN ≤ 2
0 ≤ xNM ≤ 1
0 ≤ xHM ≤ 3

Minimum-cost Network Flow problem

NetworkG = (V, E):

uij =capacityof an edge(i, j) ∈ E (# trucks dispatched daily betweeni andj)

xij =flowon an edge(i, j) ∈ E (# trucks delivering the customer’s products)

cij =coston an edge(i, j) ∈ E (cost of transportation per each truck)

bi =net supplyof a vertexi ∈ V (amount of products produced/consumed at nodei)

min ∑
(i,j)∈E

cijxij

∑
j∈V
ij∈E

xij

︸ ︷︷ ︸

flow out of i

− ∑
j∈V
ji∈E

xji

︸ ︷︷ ︸

flow into i

= bi
︸︷︷︸

net supply

0 ≤ xij ≤ uij for all ij ∈ E

Necessary condition:∑
i

bi = 0.

If there are no capacity constraints, the problem is called theTransshipment problem.

10.5 Network Simplex Algorithm

Primal Dual
min ∑

(i,j)∈E

cijxij

∑
j∈V

(i,j)∈E

xij − ∑
j∈V

(j,i)∈E

xji = bi
︸︷︷︸

net supply

for all i ∈ V

xij ≥ 0 for all (i, j) ∈ E

max ∑
i∈V

biyi

yi − yj ≤ cij for all (i, j) ∈ E

yi unrestricted for alli ∈ V

The Network Simplex method is a specialized form of the Simplex method for solving the Minimum-cost network
flow problem. That is, starting from a basic feasible solution, we seek to improve the solution by increasing values

10.5. NETWORK SIMPLEX ALGORITHM 73

of non-basic variables. If this is not possible, we arrive atan optimal solution. If it is possible for some variable,
we increase its value as much as possible until some other variable is reduced to 0 at which point we swap the two
variables in our basis and repeat. To this end, we need to discuss the following issues:

1. what is basis like for the Transshipment problem?
2. how do we calculate shadow prices and reduced costs for a given basis?
3. how do we determine optimality?
4. how do we pivot – how do we find which variable leaves the basis?
5. how do we find starting feasible basis?

Basis

Note that in the Transshipment problem there aren equations, one for each vertex, but they are not independent(much
like in the Transportation problem and the Maximum flow problem). However, anyn − 1 of them are independent
(assuming the network is connected). So we can summarize this as follows.

Fact 1. Every basis consist ofn− 1 basic variables.

Since variables correspond to the edges of the network, thisin turn implies that

Fact 2. Every basis yields aspanning treeof the networkG.

Namely, every basis has the formxB = {xij | (i, j) ∈ F} whereF ⊆ E is set of edges ofG forming a spanning tree
(V, F) of G. (We ignore here the directions of edges inF.) To see this, recall thatF contains exactlyn− 1 elements
(since every basis hasn − 1 variables), and it cannot contain a cycle (ignoring the directions of edges), since the
columns of the basis matrixB corresponding to the edges of such a cycle would not be independent (we can combine
them to produce the zero vector), which is impossible, sinceB is invertible.

For example, consider the delivery company example withoutthe capacities. Recall that we seek to deliver 2 units of
flow (truck-loads) from Denver to Miami. An example of such a flow (feasibleflow) is shown below. It constitutes
a basic (feasible) solution because at mostn− 1 edges carry non-zero flow (justify this fact for yourself; from this,
remember that not every feasible flow is basic). The corresponding spanning tree (basis) is produced by simply taking
all edges with non-zero flow. If there are less thann − 1 edges with non-zero flow (the solution is degenerate),
additional edges with 0 flow might be needed to be added to forma basis – spanning tree. The choice can be arbitrary
as long as there are no cycles.

2
$5

0
$3

0 $4

2
$3

2 $4

0
$5

D

C N

H M

2
$5

2
$3

2 $4

0
$5

D

C N

H M

Edge Cost Flow

DC $5 2
DH $3 0
CH $4 0
CN $3 2
NM $4 2
HM $5 0

Total cost:$24

Shadow prices

Note that shadow prices, one for each equation, correspond to nodes ofG. Namely, we have a shadow priceyi for
eachi ∈ V where this shadow price corresponds to the equation for conservation of flow at the nodei. To find shadow
prices, we use complementarity – the dual constraints corresponding to basic variables must be tight. By inspecting
the dual, we see that the dual contraints areyi − yj ≤ cij for each(i, j) ∈ E. Thus for edges(i, j) forming our basis,
we must satisfy this with equality,yi − yj = cij. This yieldsn− 1 equations inn variables, anunderdetermined
system. To determine this system we arbitrarily sety1 = 0. Then we can find all the other shadow prices as follows:

• for every basic(i, j) ∈ E:
– if yj has been determined but notyi, then setyi = yj + cij;
– if yi has been determined but notyj, then setyj = yi − cij.

74 CHAPTER 10. NETWORK PROBLEMS

• repeat until all shadow prices are determined.

(This should remind you of a similar process that we used in the Transportation Simplex algorithm.)

SetyD = $0. Then since the edgeDC is basic, we must haveyC = yD − cDC = yD − $5. SinceyD = $0, we have
yC = −$5. Likewise for all other basic edges, we haveyN = yC − $3 andyM = yN − $4 andyM = yH − $5.
ThereforeyN = −$8, yM = −$12, andyH = −$7.

2
$5

2
$3

2 $4

0
$5

0

2
$5

2
$3

2 $4

0
$5

0

−5

2
$5

2
$3

2 $4

0
$5

0

−5 −8

2
$5

2
$3

2 $4

0
$5

0

−5 −8

−12

2
$5

2
$3

2 $4

0
$5

0

−5 −8

−7 −12

Reduced costs

Once shadow prices are found, we can determine reduced costsof all non-basic variables. We “price out” all non-basic
edges. From the dual constraints, we see (since we are minimizing) that

thereduced costof edge(i, j) ∈ E is yi − yj − cij

We calculate reduced costs of everynon-basic edgeusing the shadow prices we calculated above. For instance, the
reduced cost of the edgeDH is yD − yH − cDH = $0− (−$7)− $3 = $4. Similarly, the reduced cost of the edge
CH is yC − yH − cCH = −$5− (−$7)− $4 = −$2. Note that, by definition, the reduced cost of everybasicedge
is $0 (check this for yourself).

2
$5

0
$3

0 $4

2
$3

2 $4

0
$5

0

−5 −8

−7 −12

−→
2 $0

$5

0 $4
$3

0 -$2 $4

2 $0
$3

2 $0 $4

0 $0
$5

0

−5 −8

−7 −12

Optimality criterion

The solution is optimal if and only if each non-basic edge(i, j) hasnon-positivereduced cost, i.e.,
yi − yj − cij ≤ 0

If not, then there is an edge(i, j) ∈ E such thatxij = 0 andyi − yj > cij. The solution can be improved by entering
xij into the basis and increasing it appropriately. To do this, we need to determine the leaving variable. We do this in
the following section.

10.5. NETWORK SIMPLEX ALGORITHM 75

In our scenario above, the edge DH has positive reduced cost$4 while the edge CH has negative reduced cost−$2.
Thus the solution is not optimal and we can get a better solution by increasing the flow on the edge DH (has positive
reduced cost).

Finding a leaving variable

We changexij by value∆ ≥ 0. This violates conservation of flow constraints and we need to fix it. We must
increase/decrease some other edges to balance the decrease/increase inxij which in turn forces some other edges to
increase/decrease as well and so on. To make this work, we observe that adding(i, j) to our set of basic edges (which
form a spanning tree) yields a subgraph withexactly oneloop (cycle); this follows from the defining properties of
trees (being minimally acyclic – adding any one edge createsa cycle). In particular, the cycle contains the edge(i, j).
We go around this cycle and increase/decrease the flow on the edges of the cycle by∆. Namely, if the edge is in the
same direction as(i, j), we change the flow on this edge by∆; if it is in the opposite direction, then we change it by
−∆. Observe that for any value of∆ this modified flow satisfies the conservation of flow equations. It remains to find
the smallest value of∆ for which the modified flow remains feasible (non-negative).Namely, we have:

(1) each edge(i′, j′) in the direction opposite to(i, j) on the cycle:xi′ j′ decreases toxi′ j′ − ∆ ≥ 0

(2) each edge(i′, j′) in the same direction as(i, j) on the cycle:xi′ j′ increases toxi′ j′ + ∆ ≥ 0

The most strict constraint of all the above determines the leaving variable. Namely, the variable giving the smallest
upper bound on∆ is leaving. Then we modify the flow on the edges of the cycle by adding∆ to the flow on edges in
the same direction as(i, j) and subtracting∆ to the rest.

We decided to increase the flow to∆ on the edge DH. Adding DH into the basis creates a loop D-H-M-N-C-D. We
increase/decrease flow along this loop. Namely, the flow on the edge HM is increased by∆, since this edge has the
same direction (along the loop) as DH. The flow on DC, CN, NM is decreased by∆, since the direction of these edges
(with respect to the loop) is opposite to that of DH.

2− ∆ $0
$5

∆ $4
$3

2− ∆ $0
$3

2− ∆ $0 $4

∆ $0
$5

0

−5 −8

−7 −12

0
$5

2
$3

0
$3

2
$5

The largest value for∆ (guaranteeing that the flow remains non-negative on every edge) is∆ = 2. With that, the
flow on edges DH, HM is increased to 2, while the flow on DC, CN, NMis reduced to 0. One of these three edges
is a candidate for leaving the basis. We can choose any one of DC, CN, NM (since the flow on all these three edges
reduces to zero simultaneously). We choose NM. Thus we get a new basis shown above (on the right).

Economic interpretation

The value(−yi) can be interpreted as the price of the commodity (we are transporting) in nodei. For instance, in the
above we haveyD = $0, yC = −$5 andyH = −$7. Thus the commodity costs$0 in Denver,$5 in Chicago, and$7
in Houston.

It pays to transport the commodity (along an unused non-basic edge) if thecost of transportation is less than the
difference in price. Namely ifyi − yj is more thancij.

For instance, the price difference between Denver and Houston is$7 dollars and it costs$3 to pay transportation. Thus
transportation is cheaper than the price difference and consequently it pays to send along the edge DH. Comparing
Chicago and Houston, we see that the price difference is$2 and transportation costs$4. Therefore it does not pay to
send along the edge CH.

76 CHAPTER 10. NETWORK PROBLEMS

Unbounded LP

Note that it is possible that the above test finds no bound on∆. In this case∆ can be made arbitrarily large which in
turn makes the objective arbitrarily negative. In other words, the problem is unbounded. This happens precisely when
xij = 0 and each edge on the loop is in the direction of(i, j).

Fact 3. The problem isunbounded if and only if there exists anegative costcycle.

10.6 Network Simplex Algorithm with capacitites

To solve the more general problem with capacities, we need toslightly modify our algorithm. In particular, the
algorithm will be a variant of the Upper-Bounded Simplex method.

In addition to basic edges, we will need to keep track ofsaturated edge(edges that carry flow equal to their capacity).
They will not necessarily be part of the spanning tree. We will indicate them usingdashed lines. In addition to
increasing flow on a non-basic edge (with zero flow), we will also considerdecreasingflow on a saturated edge. This
will require modifying our optimality criterion and pivotting steps.

2/2
$5

0/1
$3

1/1 $4

1/2
$3

1/1 $4

1/3
$5

2
$5

1 $4

1
$3

1 $4

1
$5

Edge Cost Flow Cap.

DC $5 2 2
DH $3 0 1
CH $4 1 1
CN $3 1 2
NM $4 1 1
HM $5 1 3

Total cost:$26

Optimality criterion

The solution is optimal if and only if

• each non-basic edge withzero flow hasnon-positivereduced costs
• eachsaturated edgehasnon-negativereduced costs.

If not, then there is either an edge(i, j) ∈ E such thatxij = 0 andyi − yj > cij, or there is an edge(i, j) ∈ E such
thatxij = uij andyi − yj < cij. The solution can be improved by enteringxij into the basis and increasing/decreasing
it appropriately. To do this, we need to determine the leaving variable.

Finding a leaving variable

We changexij by value∆. Now ∆ can be both positive an negative. We determine the value of∆ by considering the
following inequalities.

(1) edge(i′, j′) in the direction opposite to(i, j) on the cycle:0 ≤ xi′ j′ − ∆ ≤ ui′ j′

(2) edge(i, j): 0 ≤ xij + ∆ ≤ uij

(3) edge(i′, j′) in the same direction as(i, j) on the cycle:0 ≤ xi′ j′ + ∆ ≤ ui′ j′

The most strict constraint of all the above determines the leaving variable. Namely, if the chosen edge(i, j) carried
no flow, i.e.xij = 0, then the variable giving the smallest upper bound on∆ is leaving (unless it isxij who gives this
bound). If the chosen edge(i, j) was saturated, i.e.,xij = uij, then the variable giving the largest lower bound leaves
(unless it isxij who gives this bound). Then we modify the flow on the edges of the cycle by adding∆ to the flow on
edges in the same direction as(i, j) and subtracting∆ to the rest. (Note that∆ can be negative.) If an edge becomes
saturated by this, we indicate it by a dashed line in the diagrams. This is to help keep track of the current objective
value.

10.7. COMPLETE EXAMPLE 77

Finding a starting feasible basis

Unlike in the Transportation problem, here we cannot use a greedy heuristic to find a starting feasible solution, since
we have to, in addition, satisfy the capacity constraints (without the capacity constraints, the minimum-cost method
will still work – picking edges in turn and exhausting supplyon one end or saturating demand on the other).

For small problems, we can get away with trial and error. However, in general this may not be very efficient. In fact,
there may not exist any feasible solution to the problem. We need a more robust method. This is provided to us in the
form of the two-phase method (just like with the regular Simplex algorithm).

In Phase I, we solve an auxiliary problem whose solution willgive us a starting feasible solution to our problem; then
we go on from there in Phase II optimizing this solution as described earlier.

The problem in Phase I is obtained as follows. We add a newslack nodes. For every other nodei ∈ V, we

• add the edge(s, i) of capacity−bi if bi < 0, or
• add the edge(i, s) of capacitybi if bi ≥ 0.

The edges we added in this process we callartificial while the original edges are calledreal edges.

Now we assign new costs: each real edge will cost$0, while each artificial edge will cost$1. We call this the Phase
I problem. Notice that this problem has a feasible basis, namely the basis formed by taking all artificial edges and
saturating them; assigning them flow equal to their capacity.

Fact 4. The original problem has a feasible basis if and only if the Phase I problem has optimum value 0.

If we discover that the Phase I problem does not have optimum value 0, then this yields a setS such that

∑
i∈S

bi > ∑
i∈S, j 6∈S
(i,j)∈E

uij

Namely, the setS consists of those nodes whose shadow price is less than or equal to the shadow price of the slack
node. (If we set the shadow price of the slack node to 0, then the setS simply consists of all nodes with non-positive
shadow price.) This certifies that no feasible solution can exist.

10.7 Complete example

Phase I: Slack node, artificial edges to all nodes; capacities and directions of artificial edges are dictated by the net
supply. If the net supplyb of a node is positive (e.g. Denver), then the edge goes from this node to the slack node and
capacity of this edge isb; if the net supplyb is non-positive (e.g. Miami), then the edge goes from the slack node to
this node and capacity is−b. (To remember this just note that capacity musn’t be negative.) All artificial edges have
cost $1 and all other (real) edges have cost $0.

Denver

Chicago New York

Houston Miami

2
$5

1
$3

1$4

2
$3

1$4

3
$5

(2)

(0) (0)

(0) (−2)

Phase I.−→ Denver

Chicago New York

Houston Miami

Slack

2

$0

1

$0

1$0

2

$0

1$0

3

$0

(2)

(0) (0)

(0) (−2)

2

$1

0

$1

0

$1

0

$1

2

$1

Starting basic feasible solution for Phase I: assign artificial edges flow equal to their capacity.

78 CHAPTER 10. NETWORK PROBLEMS

Starting basis:all artificial edges.

Basis shown in blue (labels on edges denote the flow and
reduced costs). Everything else will not change (costs,
capacities). See table below.

Calculate shadow prices: setyS = $0 for slack.

$0

0

0

0

0

0

0

2

0

0

0

2

Knowing shadow price of Slack, we calculate shadow
prices of nodes connected to Slack by basic edges; we use
the fact that shadow prices satisfyyi − yj = cij for every
basic edge(i, j); if j = S, then the valueyj is known and
so we plug it in to getyi.

$1

$1 $1

$1 $-1

$0

0

0

0

0

0

0

2

0

0

0

2

Calculate reduced costsyi − yj − cij for all edges

$1

$1 $1

$1 $-1

$0

0 $0

0 $0

0 $0

0 $0

0 $2

0 $2

2 $0

0 $0

0 $0

0 $0

2 $0

Edge DC DH CH CN NM HM

Cost $0 $0 $0 $0 $0 $0
Flow 0 0 0 0 0 0

Capacity 2 1 1 2 1 3
Reduced cost $0 $0 $0 $0 $2 $2

Edge DS CS HS NS SM

Cost $1 $1 $1 $1 $1
Flow 2 0 0 0 2

Capacity 2 0 0 0 2
Reduced cost $0 $0 $0 $0 $0

Edge(H, M) has zero flow and positive reduced cost→ adding it into basis can make the objective smaller.

Find the loop and maximum∆.

$1

$1 $1

$1 $-1

$0

0 $0

0 $0

0 $0

0 $0

0 $2

0 $2
+∆

2 $0

0 $0

0 $0

0 $0
−∆

2 $0
−∆

Three edges are modified:
• flow on (H, M) is increased from0 to ∆,
• flow on (S, M) is decreased from2 to 2− ∆

• flow on (H, S) is decreased from0 to−∆

(both edges haveoppositedirection than(H, M)
on the loop)

Maximum∆ is 0 because the artificial edge(H, S) has no
flow on it and thus the flow on this edge cannot decrease.
The edge(H, S) leaves the basis while(H, M) enters.
Flow does not change.

New basis:

0

0

0

0

0

0

2

0

0

0

2

Calculate shadow prices by settingyS = $0:

$1

$1 $1

$-1 $-1

$0

0

0

0

0

0

0

2

0

0

0

2

10.7. COMPLETE EXAMPLE 79

Calculate reduced costsyi − yj − cij:

$1

$1 $1

$-1 $-1

$0

0 $0

0 $2

0 $2

0 $0

0 $2

0 $0

2 $0

0 $0

0 $0

0 $-2

2 $0

Edge DC DH CH CN NM HM

Cost $0 $0 $0 $0 $0 $0
Flow 0 0 0 0 0 0

Capacity 2 1 1 2 1 3
Reduced cost $0 $2 $2 $0 $2 $0

Edge DS CS HS NS SM

Cost $1 $1 $1 $1 $1
Flow 2 0 0 0 2

Capacity 2 0 0 0 2
Reduced cost $0 $0 $-2 $0 $0

$1

$1 $1

$-1 $-1

$0

0 $0

0 $2

0 $2 +∆

0 $0

0 $2

0 $0
+∆

2 $0

0 $0
−∆

0 $0

0 $-2

2 $0
−∆

The edge(C, H) has zero flow and positive reduced cost.
We increase the flow on(C, H) to ∆.

Flow on the edge(H, M) is increased to∆ (since(H, M)
has same direction as(C, H) on the loop), while on
(M, S) is decreased to2− ∆ and on(C, S) is decreased
to−∆ (both have opposite directions). Thus∆ = 0 and
(C, S) leaves.

New basis:

0

0

0

0

0

0 $0

2 $0

0 $0

0 $0

0 $-2

2 $0

Calculate shadow prices by settingyS = $0;
then determine reduced costs:

$1

$-1 $1

$-1 $-1

$0

0 $2

0 $2

0 $0

0 $-2

0 $2

0 $0

2 $0

0 $-2

0 $0

0 $-2

2 $0

Edge(D, C) enters the basis; flow increases to∆:

$1

$-1 $1

$-1 $-1

$0

0 $2
+∆

0 $2

0 $0 +∆

0 $-2

0 $2

0 $0
+∆

2 $0
−∆

0 $-2

0 $0

0 $-2

2 $0
−∆

Flow increases to∆ on edges(C, H), (H, M) and de-
creases to2 − ∆ on edges(D, S) and(S, M). The ca-
pacity of (D, C) is 2, the capacity of(C, H) is 1, and of
(H, M) is 3. Thus∆ = 1 and(C, H) leaves the basis.
This time the flow finally changes.

Important Note: the edge(C, H) is not in the basis.
Nonetheless it carries flow. The flow on(C, H) is equal
to its capacity – we say it issaturated.
We mark this by making the edge(C, H) dashed.

80 CHAPTER 10. NETWORK PROBLEMS

New basis:

1

0

1

0

0

1

1

0

0

0

1

Calculate shadow prices and reduced costs:

$1

$1 $1

$-1 $-1

$0

1 $0

0 $2

1 $2

0 $0

0 $2

1 $0

1 $0

0 $0

0 $0

0 $-2

1 $0

$1

$1 $1

$-1 $-1

$0

1 $0

0 $2

1 $2

0 $0

0 $2+∆

1 $0

1 $0

0 $0

0 $0
−∆

0 $-2

1 $0
−∆

(N, M) has zero flow and positive reduced cost
→ increase flow to∆

(note that(C, H) has also positive reduced cost; how-
ever, it is saturated – saturated edges are entered if they
havenegativereduced cost)

∆ = 0 and the edge(N, S) leaves the basis

1

0

1

0

0

1

1

0

0

0

1

Calculate shadow prices and reduced costs:

$1

$1 $-1

$-1 $-1

$0

1 $0

0 $2

1 $2

0 $2

0 $0

1 $0

1 $0

0 $0

0 $-2

0 $-2

1 $0

$1

$1 $-1

$-1 $-1

$0

1 $0
+∆

0 $2

1 $2

0 $2
+∆

0 $0+∆

1 $0

1 $0
−∆

0 $0

0 $-2

0 $-2

1 $0
−∆

(C, N) has no flow and> 0 reduced cost→ enters

Flow decreases to1− ∆ on edges(D, S) and(S, M).
Flow increases to1+∆ on edge(D, C) of capacity 2 and
increases to∆ on edges(C, N) and(N, M) of capacities
2 and 1, respectively.

∆ = 1 and we have a tie for the leaving variable. We ar-
bitrarily choose(S, M) to leave. Note that flow changes
this time (since∆ > 0).

10.7. COMPLETE EXAMPLE 81

2

0

1

1

1

1

0

0

0

0

0

$1

$1 $1

$1 $1

$0

2 $0

0 $0

1 $0

1 $0

1 $0

1 $0

0 $0

0 $0

0 $0

0 $0

0 $-2

Optimal solution (of Phase I) reached:

• each non-basic variable with zero flow has non-positive reduced cost.
• each saturated non-basic variable has non-negative reduced cost.

We convert this to a feasible solution to the original problem by removing the Slack node and artificial edges. Then
we start Phase II. Note that from now on we use the original edge costs (unlike in Phase I where we had cost $0 for
real edges and $1 for artificial edges).

2
$5

0
$3

1 $4

1
$3

1 $4

1
$5

Edge DC DH CH CN NM HM

Cost $5 $3 $4 $3 $4 $5
Flow 2 0 1 1 1 1

Capacity 2 1 1 2 1 3

Calculate shadow prices by settingyD = $0:

$0

$-5 $-8

$-7 $-12

2
$5

0
$3

1 $4

1
$3

1 $4

1
$5

Calculate reduced costsyi − yj − cij:

$0

$-5 $-8

$-7 $-12

2 $0
$5

0 $4
$3

1 $-2 $4

1 $0
$3

1 $0 $4

1 $0
$5

Now we have two options:

• the edge(D, H) hasno flow andpositive reduced cost→ we can increase the flow on(D, H)
• the edge(C, H) is saturatedand hasnegativereduced cost→ we can decrease the flow on(C, H)

We choose (arbitrarily) do decrease the flow on(C, H) by ∆.

$0

$-5 $-8

$-7 $-12

2 $0
$5

0 $4
$3

1 $-2 $4−∆

1 $0
$3

+∆

1 $0 $4+∆

1 $0
$5

−∆

Flow on(C, H) and(H, M) changes to1− ∆.
Flow on(C, N) and(N, M) changes to1 + ∆.
The capacity of(C, N) is 2, and the capacity of(N, M) is 1.

This implies that largest∆ is ∆ = 0, since we cannot increase the
flow on (N, M) as it is already saturated

→ (N, M) leaves the basis (but it stays saturated)

82 CHAPTER 10. NETWORK PROBLEMS

2
$5

0
$3

1 $4

1
$3

1 $4

1
$5

Calculate shadow prices and reduced costs:

$0

$-5 $-8

$-9 $-14

2 $0
$5

0 $6
$3

1 $0 $4

1 $0
$3

1 $2 $4

1 $0
$5

(D, H) has no flow, positive reduce cost, enters

$0

$-5 $-8

$-9 $-14

2 $0
$5
−∆

0 $6
$3
+∆

1 $0 $4

−∆

1 $0
$3

1 $2 $4

1 $0
$5

Flow on(D, C) decreases to2− ∆. Flow on(C, H) de-
creases to1−∆. Flow on(D, H) of capacity1 increases
to ∆.

→ ∆ = 1 and(C, H) leaves

1
$5

1
$3

0 $4

1
$3

1 $4

1
$5

Calculate shadow prices and reduced costs:

$0

$-5 $-8

$-3 $-8

1 $0
$5

1 $0
$3

0 $-2 $4

1 $0
$3

1 $-4 $4

1 $0
$5

(N, M) is saturated and has negative reduced cost
→ decrease flow on(N, M)

$0

$-5 $-8

$-3 $-8

1 $0
$5
−∆

1 $0
$3
+∆

0 $-2 $4

1 $0
$3

−∆

1 $-4 $4

−∆

1 $0
$5

+∆

Flow on(D, C), (C, N), and(N, M) decreases to1− ∆.
Flow on(D, H) and(H, M) increases to1 + ∆.
The capacity of(D, H) is 1 and the capacity of(H, M) is 3.

∆ = 0 since(D, H) is already saturated

→ (D, H) leaves (but stays saturated)

1
$5

1
$3

0 $4

1
$3

1 $4

1
$5

Calculate shadow prices and reduced costs:

$0

$-5 $-8

$-7 $-12

1 $0
$5

1 $4
$3

0 $-2 $4

1 $0
$3

1 $0 $4

1 $0
$5

Optimal solution found

• all edges withno flow havenon-positivereduced cost (e.g.(C, H) has no flow and reduced cost $-2)
• all saturatededges havenon-negativereduced cost (e.g.(D, H) is saturated with reduced cost $4)

Optimal flow consists of one unit accross all edges but(C, H). The cost is $5+$3+$3+$5+$4=$20.

10.8. SUMMARY 83

10.8 Summary

NetworkG = (V, E) hasnodesV andedgesE.

• Each edge(i, j) ∈ E has acapacity uij andcostcij.
• Each vertexi ∈ V providesnet supply bi.

For a setS ⊆ V, write S for V \ S and writeE(S, S) for the set of edges(i, j) ∈ E with i ∈ S and j ∈ S. The pair
(S, S) is called acut. (Where applicable) there are two distinguished nodes:s =sourceandt =sink.

Minimum spanning tree

Primal Obstruction (to feasibility) :
setS ⊆ V with ∅ 6= S 6= V such thatE(S, S) = ∅min ∑

(i,j)∈E

cijxij

∑
(i,j)∈E(S,S)
︸ ︷︷ ︸

edges fromS to S

xij > 0 for all S ⊆ V
where∅ 6= S 6= V

xij ≥ 0 for all (i, j) ∈ E

Shortest path problem

Primal Dual
min ∑

(i,j)∈E

cijxij

∑
j∈V

(i,j)∈E

xij

︸ ︷︷ ︸

flow out of i

− ∑
j∈V

(j,i)∈E

xji

︸ ︷︷ ︸

flow into i

=







1 i = s
−1 i = t
0 else

for all i ∈ V

xij ≥ 0 for all (i, j) ∈ E

maxys − yt

yi − yj ≤ cij for all (i, j) ∈ E

yi unrestricted for alli ∈ V

Obstruction (to feasibility): setS ⊆ V with s ∈ S andt ∈ S such thatE(S, S) = ∅

Maximum-flow problem

Primal Dual

max z

∑
j∈V

(i,j)∈E

xij − ∑
j∈V

(j,i)∈E

xji =







z i = s
−z i = t
0 else

for all i ∈ V

0 ≤ xij ≤ uij for all (i, j) ∈ E

z unrestricted

min ∑
(i,j)∈E

uijvij

yi − yj + vij ≥ 0 for all (i, j) ∈ E

yt − ys = 1

vij ≥ 0 for all (i, j) ∈ E

yi unrestricted for alli ∈ V

Obstruction (to feasibility): setS ⊆ V with s ∈ S andt ∈ S such thatz > ∑
(i,j)∈E(S,S)

uij

︸ ︷︷ ︸

capacity of the cut(S, S)(no flow bigger than the capacity of a cut)

84 CHAPTER 10. NETWORK PROBLEMS

Minimum-cost (s, t)-flow problem

Primal Dual
min ∑

(i,j)∈E

cijxij

∑
j∈V

(i,j)∈E

xij − ∑
j∈V

(j,i)∈E

xji =







f i = s
− f i = t
0 else

for all i ∈ V

0 ≤ xij ≤ uij for all (i, j) ∈ E

max f ys − f yt − ∑
(i,j)∈E

uijvij

yi − yj − vij ≤ cij for all (i, j) ∈ E

vij ≥ 0 for all (i, j) ∈ E

yi unrestricted for alli ∈ V

Obstruction (to feasibility) : setS ⊆ V with s ∈ S andt ∈ S such thatf > ∑
(i,j)∈E(S,S)

uij

Transshipment problem

Primal Dual
min ∑

(i,j)∈E

cijxij

∑
j∈V

(i,j)∈E

xij − ∑
j∈V

(j,i)∈E

xji = bi
︸︷︷︸

net supply

for all i ∈ V

xij ≥ 0 for all (i, j) ∈ E

max ∑
i∈V

biyi

yi − yj ≤ cij for all (i, j) ∈ E

yi unrestricted for alli ∈ V

Obstruction (to feasibility) : setS ⊆ V such that∑
i∈S

bi > 0 andE(S, S) = ∅

Minimum-cost network flow problem

Primal Dual
min ∑

(i,j)∈E

cijxij

∑
j∈V

(i,j)∈E

xij − ∑
j∈V

(j,i)∈E

xji = bi for all i ∈ V

0 ≤ xij ≤ uij for all (i, j) ∈ E

max ∑
i∈V

biyi − ∑
(i,j)∈E

uijvij

yi − yj − vij ≤ cij for all (i, j) ∈ E

vij ≥ 0 for all (i, j) ∈ E

yi unrestricted for alli ∈ V

Obstruction (to feasibility) : setS ⊆ V such that∑
i∈S

bi > ∑
(i,j)∈E(S,S)

uij

11
Game Theory

During the 8PM to 9PM time slot, two TV networks compete for anaudience of 100 million viewers. The networks
announce their schedule ahead of time and do not know of each other’s decision until the show time. Based on that a
certain number of people will tune to Network 1 while the restwill watch Network 2. The market research revealed
the following expected number of viewers of Network 1.

Network 2

Network 1 Western Soap Opera Comedy

Western 35 15 60

Soap Opera 45 58 50

Comedy 38 14 70

For instance, if Network 1 shows a Western while
Network 2 shows a Comedy, then

60 million viewers will watch Network 1, and

100− 60 = 40 million watch Network 2.

Question: What strategy should the two networks use to maximize their viewership?

Terminology:

• Network 1 is arow player.
• Network 2 is acolumn player.
• The above matrix is called apayoff matrix .
• This is aconstant-sumgame (the outcome for both players always sums up to a constant 100 million).

How to solve this game? Let us look at the structure of outcomes. For instance, if Network 1 chooses to show Western,
then it can get as many as 60 million viewers (if Network 2 chooses to show a Comedy) but also as little as 15 million
(if Network 2 shows a Soap Opera). Thus this choice cannot guarantee more than 15 milion viewers for Network 1
(in the worst case). If the network instead chooses to show a Comedy, the situation is even worse, since then we can
guarantee only 14 million viewers (the minimum in the 3rd row). The best therefore for Network 1 is to choose to
show a Soap Opera in which case 45 million or more viewers willtune to Network 1 regardless of what Network 2
does. Note that in this strategy Network 1 (being the row player) simply calculates therow minimum of each row and
then chooes the row withlargest row minimum.

By the same argument, Network 2 (being the column player) canmaximize its vieweship by calculating eachcolumn
maximum and choosing column with the smallest column maximum.

It is easy to see that the two outcomes will satisfy the following inequality

max
all rows

(row minimum) ≤ min
all columns

(column maximum)

In this example, Network 1 chooses Soap Opera and Network 2 chooses Western whereby 45 million viewers will
watch Network 1 and 55 million will watch Network 2. Note thatthis choice is simultaneously best for both Network

85

86 CHAPTER 11. GAME THEORY

1 and Network 2 (we have equalitymax (row minimum) = min (col maximum)). This is called asaddle point
and the common value of both sides of the equation is called thevalueof the game.

• An equilibrium point of the game: choice of strategies for both players such that neither player can improve
their outcome by changing his strategy.
• A saddle pointof a game is an example of an equilibrium.

11.1 Pure and Mixed strategies

Note the in the above example each player’s strategy was deterministic; they each examined possible outcomes and
made a specific single choice to follow. This is called apure strategy.

Unfortunately, there are games with no saddle points and following a pure strategy may not always give the players
the best outcome. (Consider for instance Poker – see next section.) We need to generalize our definition of strategy.
Instead of choosing one fixed move, the player considers all moves and chooses randomly according to a distribution.
The outcome of the game will depend on the chosen distribution.

• amixed (randomized) strategy(x1, x2, . . . , xn) is a probability distribution overn possible moves of the player
(i.e. satisfiesx1 + x2 + . . . + xn = 1)
• optimal strategy is a strategy maximizing theexpectedgain for the player

Note that since we are now using chance we can sometimes gain more, sometimes less; thus we will settle for maxi-
mizing the average outcome (if, say, we play the game repeatedly for many rounds).

Betting Game

Player 1 draws a card from a card deck (and hides it from the other player). Then he decides to eitherpassin which
case he discards the card and pays$1 to Player 2, or he willbet in which case it is 2nd player’s turn. Player 2 can
eitherfold in which case she pays$1 to Player 1, or she willcall and the card is revealed.

If the revealed card ishigh (10, Jack, Queen, King, Ace), then Player 2 pays$2 to Player 1. Otherwise, the card islow
(2 through 9) and Player 1 pays$2 to Player 2.

Let us analyze the possible strategies for Player 1. Given the card, the card can be either high or low. Based on that the
player can either pass or bet. So there are 4 possible strategies: pass on both high and low (PP), pass on high and bet
on low (PB), bet on high and pass on low (BP), and bet on both high and low (BB). Player 2 can eitherCall or Fold.
The possible expected outcomes of the game are then as follows.

Player 2

Player 1 Call Fold Row
Minimum

PP −1 −1 −1

PB −1 8
13

3
13 −1 8

13

BP 2
13 − 3

13 − 3
13

BB − 6
13 1 − 6

13

Column
Maximum

2
13 1

Thus, for instance, suppose that Player 1 plays strategyBP (bet on
high, pass on low) and Player 2calls. Then either the card is high,
Player 1 bets and wins$2, or the card is low and Player 1 folds and
loses$1. The chance of getting a high card is5/13 and thus getting
a low card has probability of8/13. So on average Player 1 gains

5

13
$2 +

8

13
(−$1) =

2

13
≈ $0.15

On the other hand, if Player 1 playsBP but Player 2folds, then the
expected gain of Player 1 is only− 3

13 ≈ −$0.23. So clearly, the
intuitive strategyBP (bet on high, pass on low) is not necessarily
best against a worst-case opponent.

Note that this is azero-sumgame since either Player 1 pays Player 2 or vice-versa (the sum of the players’ gains is
zero). Looking at the table above, we see that largest row minimum is− 3

13 while smalest column maximum is213 . So
this game does not have a saddle point (unlike the first game wediscussed).

11.1. PURE AND MIXED STRATEGIES 87

Notice that some strategies are better then others in all possible cases. For instance,
playingBP instead ofPP always gives better outcome for Player 1. We say that the
strategyPP is dominated by another strategy (in this caseBP). Clearly, if a strategy
is dominated, the player can always do better by playing another strategy. Thus we
can safely remove any dominated strategy from consideration without changing the
problem (its optimal solution). In our case, this eliminates the strategyPP as well as
the strategyPB which is dominated by the strategyBB. This leaves us with only two
strategies and the pay-off matrix shown on the right.

Player 2

Player 1 Call Fold

BP 2
13 − 3

13

BB − 6
13 1

Now we are ready to determine thebest mixed strategyfor Player 1. The
player chooses to playBP with probabilityx1 or playsBB with probabilityx2,
wherex1 + x2 = 1. We denote thismixed strategyas(x1, x2). An expected
outcomeof this strategy is2

13 x1 − 6
13 x2 if Player 2callsand is− 3

13 x1 + x2 if
Player 2folds. So the worst-case outcome is simply the minimum of the two

min
(x1,x2)

{ 2
13 x1 − 6

13 x2,− 3
13 x1 + x2}

Sincex1 + x2 = 1, we can simplify this to

outcome= min
x1

{ 8
13 x1 − 6

13 , 1− 16
13 x1}

1@
16

AB
 C1

8

AB
 C1 @

6

AB

1

10 C1

eCDeEFeG
gHIJ KL
PMHNeO 1

PMHNeO Q LKMGR

PMHNeO Q EHMMR

minimum

S

We can plot the possible outcomes (based on the choices ofx1) as shown on the right. From this we determine that the
best mixed strategy for Player 1 is the pointE corresponding to strategy(x1, x2) wherex1 = 19/24 andx2 = 5/24.
This guarantees the player expected gain of1/39 ≈ $0.025.

Answer: The best strategy for Player 1 is to randomly choose between betting on high, passing on low with probability
79 1

6% or always bet with probability20 5
6 %. This gives him expected gain of¢2.5.

Similarly, we can determine the best mixed strategy for Player 2. Let(y1, y2) be
the probabilities of Player 2 calling (y1) or folding (y2) wherey1 + y2 = 1. If
Player 1 playsBP, then the expected outcome (loss) for Player 2 is2

13 y1 − 3
13 y2.

If Player 1 playBB, then the outcome is− 6
13 y1 + y2. Thus the worst-case loss for

Player 2 is the maximum of the two.

max
(y1,y2)

{ 2
13 y1 − 3

13 y2,− 6
13 y1 + y2}

Using the fact thaty1 + y2 = 1, this simplifies to

max
y1

{ 5
13 y1 − 3

13 , 1− 19
13 y1}

We can plot the possible outcomes as shown on the right. The best strategy for
Player 2 is the pointF corresponding to strategy(y1, y2) wherey1 = 2

3 andy2 =
1
3 with expected loss of139 ≈ $0.025. Thus the best strategy for Player 2 is to call
with 66 2

3 % probability and to fold with33 1
3 % probability.

1T
1U

VW
X1

Y

VW
X1 T

W

VW

1

10 X1

Z[\Z]^Z_
l`aa `d
flhXZj 2

flhXZj V \lhXa kk

flhXZj 1
\lhXa kf

maximum

m

Linear programing

We can now see what are the best strategies for the two players. Player 1 tries to choose probabilitiesx1, x2 so as to
maximize themin{ 2

13 x1 − 6
13 x2,− 3

13 x1 + x2} where probabilitiesx1, x2 sum up to 1. Similarly, Player 2 chooses
his probabilitiesy1, y2 so as to minimizemax{ 2

13 y1 − 3
13 y2,− 6

13 y1 + y2} wherey1 + y2 = 1. Using the tricks we
learnt, we see that both these problem can be transformed into linear programs as follows.

88 CHAPTER 11. GAME THEORY

max z

subject to 2
13 x1 − 6

13 x2 ≥ z

− 3
13 x1 + x2 ≥ z

x1 + x2 = 1

x1, x2 ≥ 0

min w

subject to 2
13 y1 − 3

13 y2 ≤ w

− 6
13 y1 + y2 ≤ w

y1 + y2 = 1

y1, y2 ≥ 0

which we can rewrite as follows:

max z

subject to − 2
13 x1 + 6

13 x2 + z ≤ 0

3
13 x1 − x2 + z ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

z unrestricted

min w

subject to − 2
13 y1 + 3

13 y2 + w ≥ 0

6
13 y1 − y2 + w ≥ 0

y1 + y2 = 1

y1, y2 ≥ 0

w unrestricted

Notice that the two programs areduals of each other. This is not a coincidence. In fact, it is alwaysthe case in
zero-sum (constant-sum) games. This tells us that the optimal solutions to the two programs have thesame value
by Strong Duality, which defines thevalue of the game. Moreover, the optimal strategies for the two players satisfy
Complementary Slackness (verify this for the solutions we found above). In other words, the solutions to the two
problems form anequilibrium point (neither play can do better by changing his/hers strategy). In the literature, this
is often calledNash equilibrium.

11.2 Nonconstant-sum Games

In the real world, more often we find situations where the gains/losses of the players are not necessarily constant. This
happens for instance in cases where cooperating players cangain more together than by competing alone.

A prototypical example of this is the famousPrisoners’ dilemma. In
this problem, we have two criminals who commited a crime but there is
not enough evidence against both of them. The district attorney gives
each a chance to confess. If both confess, then they both go tojail for 5
years. If only one of them confesses, he is let free and the other crim-
inal gets 20 years in jail. If neither confesses, they are each sentenced
for 1 year for a misdemeanor. The two criminals are not allowed to
communicate.What is the best strategyfor each of them?

Criminal 2

Criminal 1 Confess Don’t
confess

Confess (−5,−5) (0,−20)

Don’t
confess

(−20, 0) (−1,−1)

The pay-off matrix now has different pay-offs for the two players as shown on the right. Clearly the pay-offs do not
sum up to the same value each time. If they both confess they each go to jail for 5 years (sum is 10), while if they both
do not confess, they each go to jail only for 1 year (sum is 2).

Note that both confessing is anequilibrium point, since if only one of them changes his mind (does not confess), he
goes to jail for 20 year (which is more than 5 he gets by confessing). However, if they both change their mind (do
not confess), they both improve their situation (each only gets 1 year in jail). This does not change our conclusion
that confessing is an equilibrium. To be an equilibrium we only check that each player by himself cannot get a better
outcome if he changes his mind (and others play the same way.

On the other hand, both not confessing, is not an equilibrium, since either player can change his mind and confess and
thus not go to jail (while the other player gets 20 years – again, we only consider a single player changing his mind).

To solve this game, we see that the strategyDon’t confessis dominatedby strategyConfessin both players (the player
can always do better by confessing when playing against a worst-case opponent). By eliminating these strategies, we
are left with the unique equilibrium where both players confess.

Recall that this is apure (deterministic) strategy. In other cases, eliminating dominated strategies will leave more than
one choice and we formulate the maximization problem just like we did before. Solving it for both players gives us
their optimalmixed strategy.

12
Integer programming

Integer Linear Program

max cx
Ax = b

x ≥ 0
x integer

– pure IP = all variables integer
– mixed IP = some variables integer
– LP relaxation of an ILP = dropping the integer restriction

Example:

(PURE) INTEGERPROGRAM

max 4x1 + 2x2 + 3x3

5x1 + 3x2 + 4x3 ≤ 7

x1, x2, x3 ∈ {0, 1}

optimal solution:
x1 = 0, x2 = x3 = 1, z = 5

M IXED INTEGERPROGRAM

max 4x1 + 2x2 + 3x3

5x1 + 3x2 + 4x3 ≤ 7

0 ≤ x1, x2 ≤ 1
x3 ∈ {0, 1}

optimal solution:
x1 = 0.6, x2 = 0, x3 = 1, z = 5.4

LP RELAXATION

max 4x1 + 2x2 + 3x3

5x1 + 3x2 + 4x3 ≤ 7

0 ≤ x1, x2, x3 ≤ 1

optimal solution:
x1 = 1, x2 = 0, x3 = 0.5, z = 5.5

12.1 Problem Formulation

Review LP formulations

Standard LP problems:
– diet problem
– product mix
– blending
– inventory
– scheduling
– budgeting

Tricks:
1. maximum/minimum:

max{ f , g} ≤ h ⇐⇒ 2 constraintsf ≤ h
g ≤ h

min{ f , g} ≥ h ⇐⇒ 2 constraintsf ≥ h
g ≥ h

2. absolute value: | f − g| ≤ h ⇐⇒ 2 constraintsf − g ≤ h
g− f ≤ h

(to see this, note that| f − g| ≤ h means thatg lies betweenf − h and f + h; that is, f − h ≤ g ≤ f + h)

3. positive/negative values f = x+ − x− wherex+, x− are new non-negative variables

⇒ now x+ is the positive part off (or zero) andx− the negative part off (or zero)

Important: must make sure thatx+ andx− are never both basic in the optimum, else it doesn’t work

alternatively: 2 constraints f ≤ x+ and − f ≤ x− (with similar caveats)

89

90 CHAPTER 12. INTEGER PROGRAMMING

Standard problems

Knapsack - resource allocation, portfolio selection

– 4 possible investments
– $14, 000 cash available

investment yield
1 $5,000 $16,000
2 $7,000 $22,000
3 $4,000 $12,000
4 $3,000 $8,000

max 16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 ∈ {0, 1}
optimal solution:z = $42, 000

x1 = 0, x2 = x3 = x4 = 1

(burglar Bill wants to steal items of as much value as possible, but has has limited size knapsack)

LP relaxation of the Knapsack problem is calledFractional Knapsack
– optimal solution: pick items with highest value per unit

max 16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

0 ≤ x1, x2, x3, x4 ≤ 1

investment yield/$1
1 $5,000 $3.20
2 $7,000 $3.14
3 $4,000 $3.00
4 $3,000 $2.67

optimal solution:z = $44, 000
x1 = x2 = 1, x3 = 0.5, x4 = 0

More constraints:

‘at most two investments’ ⇐⇒ x1 + x2 + x3 + x4 ≤ 2

‘if invested in #2, then must invest in #3’ ⇐⇒ x3 ≥ x2

‘if invested in #1, then cannot invest in #4’ ⇐⇒ x1 + x4 ≤ 1

Fixed-charge problem– facility location

• company needs to serve 3 regions with weekly demands 80, 70, and 40 units, respectively.
• can open a facility in any of 4 cities (New York, Los Angeles, Chicago, Atlanta)
• each facility can ship 100 units (per week)
• opening a facility caries operating costs (per week)

Transportation costs (per unit)
Facility Cost Region 1 Region 2 Region 3

New York $400 $20 $40 $50
Los Angeles $500 $48 $15 $26

Chicago $300 $26 $36 $18
Atlanta $150 $24 $50 $35

xij = amount transported from facilityi to regionj

yi ∈ {0, 1} = indicates if facility is opened (1) in cityi or not (0)

min 400y1 + 20x11 + 40x12 + 50x13 + 500y2 + 48x21 + 15x22 + 26x23

+300y3 + 26x31 + 36x32 + 18x33 + 150y4 + 24x41 + 50x42 + 35x43

x11 + x21 + x31 + x41 ≥ 80
x12 + x22 + x32 + x42 ≥ 70
x13 + x23 + x33 + x43 ≥ 40

x11 + x12 + x13 ≤ 100y1

x21 + x22 + x23 ≤ 100y2

x31 + x32 + x33 ≤ 100y3

x41 + x42 + x43 ≤ 100y4

y1, y2, y3, y4 ∈ {0, 1}
xij ≥ 0 for i ∈ {1, 2, 3, 4}

j ∈ {1, 2, 3}
Set-cover problem

• open facilities to serve 6 cities
• a facility in one city can serve neigh-

bouring cities within 15 miles

City 1 2 3 4 5 6
Cost $500 $340 $450 $250 $200 $300

Distance City 2 City 3 City 4 City 5 City 6

City 1 10 20 30 30 20
City 2 25 35 20 10

City 3 15 30 20
City 4 15 25

City 5 14

12.1. PROBLEM FORMULATION 91

xi ∈ {0, 1} = indicates if a facility
is opened in cityi

City 1 2 3 4 5 6

Neighbouring
cities

1,2 1,2,6 3,4 3,4,5 4,5,6 2,5,6

min z = 500x1 + 340x2 + 450x3 + 250x4 + 200x5 +
300x6

x1 + x2 ≥ 1
x1 + x2 + x6 ≥ 1

x3 + x4 ≥ 1
x3 + x4 + x5 ≥ 1

x4 + x5 + x6 ≥ 1
x2 + x5 + x6 ≥ 1

x1, x2, x3, x4, x5, x6 ∈ {0, 1}
Non-linear objectives– price discounts (piece-wise linear functions)

• first 500 gallons – 25 cents
• next 500 gallons – 20 cents
• any gallon above that – 15 cents

z = cost ofx gallons

write x = x1 + x2 + x3

where0 ≤ x1, x2 ≤ 500
andx3 ≥ 0

thenz = 25x1 + 20x2 + 15x3

x1 ≥ 500y1 ≥ x2 ≥ 500y2

My2 ≥ x3 y1, y2 ∈ {0, 1}

Network problems - Travelling salesman
• find a shortest cycle through all nodes

of G = (V, E) whereV = {1, . . . , N}
• xij = 1 if edge(i, j) on the route
• ui = k if i is k-th node on the route

min ∑
(i,j)∈E

cijxij

∑
j

xij = 1 and ∑
j

xji = 1 for all i ∈ V

ui − uj + Nxij ≤ N − 1 for all (i, j) ∈ E, i, j 6= 1

ui ≥ 0 and xij ∈ {0, 1}

Why this works? The first two constraints make sure that exactly one edge is coming in and one edge going out
of each node. So the chosen edges form a collection of cycles.If edge(i, j) is used, i.e. ifxij = 1, then we have
ui − uj + N ≤ N − 1 and soui < uj. This excludes any cycle on nodes{2, . . . , N}. So there can only be one cycle,
through all nodes. The objective function selects such a cycle of minimum cost.

Scheduling problems- non pre-emptive job scheduling

• schedule jobs on a machine(s), jobs have arrival time and processing time, minimize waiting time
• xijk = 1 if job j is i-th to be processed on machinek
• once job is started, it cannot be interrupted (no pre-emption)

Tricks

Or constraint: f ≤ 0 or g ≤ 0 ⇐⇒ 2 constraintsf ≤ My
g ≤ M(1− y)

y ∈ {0, 1} andM is a large number

If-then : if f > 0, theng ≥ 0 ⇐⇒ 2 constraints−g ≤ My
f ≤ M(1− y)

y ∈ {0, 1} andM is a large number

Piece-wise linearfunctionz
• breakpointsb1, b2, . . . , bt

• with valuesf1, f2, . . . , ft

x = b1x1 + b2x2 + . . . + btxt

z = f1x1 + f2x2 + . . . + ftxt

x1 + x2 + . . . + xt = 1

b1 b2 b3 b4 b5

f1

f2

f3

f4
f5

y1 + y2 + . . . + yt−1 = 1
y1, . . . , yt ∈ {0, 1}
x1 ≤ y1

x2 ≤ y1 + y2

x3 ≤ y2 + y3
...

xt−1 ≤ yt−2 + yt−1

xt ≤ yt−1

Why this works? The variableyi indicates thatx is betweenbi andbi+1; if yi = 1, then onlyxi andxi+1 can be
positive; so we havexi + xi+1 = 1 and thusx = bixi + bi+1(1− xi) andz = fixi + fi+1(1− xi) where0 ≤ xi ≤ 1;
this exactly corresponds to the segment between(bi, fi) and(bi+1, fi+1)

92 CHAPTER 12. INTEGER PROGRAMMING

12.2 Cutting Planes

Let us go back to our toy factory problem. The toys are sold to awholesale distributor who demands shipments in
packs (boxes) of 30. There’s no limit on how much we can produce.

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1, x2 ≥ 0

→

30w1 = x1

30w2 = x2

w1, w2 ≥ 0
integer

→

Max 90w1 + 60w2

30w1 + 30w2 ≤ 80
60w1 + 30w2 ≤ 100

w1, w2 ≥ 0
integer

Consider the first constraint30w1 + 30w2 ≤ 80. Let’s divide both sides by30. We obtainw1 + w2 ≤ 8
3 . Notice that

the left-hand side of the constraint is an integer, while theright-hand side is a fraction. Therefore

w1 + w2
︸ ︷︷ ︸

integer

≤ 8

3
= 2 +

2

3
→ w1 + w2 − 2

︸ ︷︷ ︸

integer

≤ 2

3
︸︷︷︸

<1

→ w1 + w2 − 2 ≤ 0
︸ ︷︷ ︸

cut

What happens? We rewrite the constraint so that the left-hand side is integer and the right-hand side is a positive
fraction less than one. Then, since the left-hand side is integer and is less than a fraction of one, it must be zero or
less. This gives us anew constraintthat we call acut or acutting plane. We can add this cut as our new constraint
without removing anyinteger feasible solution.

Doing the same for the second constraint60w1 + 30w2 ≤ 100:

60w1 + 30w2 ≤ 100 → 2w1 + w2
︸ ︷︷ ︸

integer

≤ 10

3
= 3 +

1

3
→ 2w1 + w2 − 3

︸ ︷︷ ︸

integer

≤ 1

3
︸︷︷︸

<1

→ 2w1 + w2 − 3 ≤ 0
︸ ︷︷ ︸

cut

1 2 3

1

2

3

1

2

3

1 2 3

optimal
fractional
opqrtvpw

optimal
vwty{y|

solutipw

}rt

}rt

Integer Linear Program

Max 90w1 + 60w2

w1 + w2 ≤ 2
2w1 + w2 ≤ 3

w1, w2 ≥ 0
integer

LP relaxation
Max 90w1 + 60w2

w1 + w2 ≤ 2
2w1 + w2 ≤ 3

w1, w2 ≥ 0

Note: Every feasible solution to an integer linear program is alsoa feasible solution to its LP relaxation. Thus if the
LP relaxation has integer optimal solution, then this is anoptimal solution to theILP .

The LP relaxation has an optimal solutionw1 = w2 = 1 of valuez = 150. Since this is an integer solution, it is also
an optimal solution to the original integer linear program.

Conclusion: for optimal production, we should produce 1 box of each of thetwo toys.

Now, suppose that a different distributor demands that toy soldiers are delivered in boxes of 20, while toy trains in
boxes of 25. We simplify the constrains by dividing both sides by 5 (and the objective by 10).

Max 3x1 + 2x2

x1 + x2 ≤ 80
2x1 + x2 ≤ 100

x1, x2 ≥ 0

20w1 = x1

25w2 = x2

w1, w2 ≥ 0
integer

Max 60w1 + 50w2

20w1 + 25w2 ≤ 80
40w1 + 25w2 ≤ 100

w1, w2 ≥ 0
integer

Max 6w1 + 5w2

4w1 + 5w2 ≤ 16
8w1 + 5w2 ≤ 20

w1, w2 ≥ 0
integer

Notice that this time we cannot directly get fractions on theright-hand side while keeping the left-hand side integer.

12.2. CUTTING PLANES 93

However, let us multiply the first constraint by 3 and add it tothe second constraint.

20w1 + 20w2 = 3(4w1 + 5w2
︸ ︷︷ ︸

≤16

) + (8w1 + 5w2
︸ ︷︷ ︸

≤20

) ≤ 3× 16 + 20 = 68

We can now divide both sides by 20 to obtainw1 + w2 ≤ 3.4. So again we can derive a cut.

w1 + w2
︸ ︷︷ ︸

integer

≤ 3.4 = 3 + 0.4 → w1 + w2 − 3
︸ ︷︷ ︸

integer

≤ 0.4
︸︷︷︸

<1

→ w1 + w2 − 3 ≤ 0
︸ ︷︷ ︸

cut

1 2 3 4

1

2

3

4

���

� 1 2 3 4

1

2

3

4

�

optimal
fractional
��������

��� �����al
fractional
��������

Max 6w1 + 5w2

4w1 + 5w2 ≤ 16
8w1 + 5w2 ≤ 20

w1 + w2 ≤ 3
w1, w2 ≥ 0

integer

We need a more systematic approach to finding cuts.

Gomory cuts

We can derive cuts directly from solving the LP relaxation. If the relaxation has an integer optimal solution, then we
are done since this is also an optimal solution to the integerproblem. If the optimal solution isfractional , we will use
rounding to obtain a cut (as explained below). This cut willcut off the fractional solution and thus make the feasible
regionsmaller. This makes sure that weimprove in each step.

Consider the optimal dictionary to our problem.

Max 6w1 + 5w2

4w1 + 5w2 ≤ 16
8w1 + 5w2 ≤ 20

w1 + w2 ≤ 3
w1, w2 ≥ 0

integer

add slack variables
(non-negative integers)

Max 6w1 + 5w2

4w1 + 5w2 + x3 = 16
8w1 + 5w2 + x4 = 20

w1 + w2 + x5 = 3
w1, w2, x3, x4, x5 ≥ 0

integer

w1 =
5

3
− 1

3
x4 +

5

3
x5

w2 =
4

3
+

1

3
x4 −

8

3
x5

x3 =
8

3
− 1

3
x4 +

20

3
x5

z =
50

3
− 1

3
x4 −

10

3
x5

Chooseany line of the dictionary with afractional constant (in this case every line qualifies, includingz). This choice
is arbitrary but good practice suggest to choose the line where the fraction is closest to 1/2.

We pick the expression forz and move whole parts to the left, keeping only fractions on the right. This time we also
have fractional coefficient with variables. We rearrange the expression so that on the right each variable hasnegative
fractional coefficient, while the absolute constant is apositive fraction.

z = 50
3
︸︷︷︸

16+ 2
3

− 1
3 x4 − 10

3
︸︷︷︸

−3− 1
3

x5 → z + 3x5 − 16 = 2
3 − 1

3 x4 − 1
3 x5

︸ ︷︷ ︸

negative fractions

→ z + 3x5 − 16 ≤ 0
︸ ︷︷ ︸

cut

What happens?Because the coefficients of variables on the right-hand sideare negative, the value of the right-hand
side is 2/3 or less (cannot be more, since the variables are non-negative). So the value of the left-hand side is also at

94 CHAPTER 12. INTEGER PROGRAMMING

most 2/3, but since the left-hand side is integer, the value is actually at most 0. We add the cut to our dictionary by
introducing aslack (non-negative integer) and express it using the fractions.

z + 3x5 − 16 + x6 = 0 → x6 = −(z + 3x5 − 16) = −(2
3 − 1

3 x4 − 1
3 x5) → x6 = − 2

3 + 1
3 x4 +

1
3 x5

���

1 2 3 4

1

2

3

4

�

��������
����������
��������

��� ��

1 2 3 4

1

3

4

�

��� �����al
��������
��������

2

w1 = 5
3 − 1

3 x4 + 5
3 x5

w2 = 4
3 + 1

3 x4 − 8
3 x5

x3 = 8
3 − 1

3 x4 + 20
3 x5

x6 = − 2
3 + 1

3 x4 + 1
3 x5

z = 50
3 − 1

3 x4 − 10
3 x5

Dually feasible dictionary
→ use Dual Simplex

x6 leaves (value< 0)

ratio test:
x4 : (1/3)/(1/3) = 1
x5 : (10/3)/(1/3) = 10

→ x4 enters

w1 = 1 + 2x5 − x6

w2 = 2 − 3x5 + x6

x3 = 2 + 7x5 − x6

x4 = 2 − x5 + 3x6

z = 16 − 3x5 − x6

Optimal integer solution foundw1 = 1, w2 = 2 with valuez = 16 (corresponds to$160 of profit).

Conclusion: optimal production consists of producing one pack of toy soldiers, and two packs of toy trains.

Cutting planes algorithm

This worksonly for pure integer linear programs.

1. Solve the LP relaxation.

2. If the LP isinfeasible, thenreport that the problem isinfeasible, andstop.

3. If all variables are integers, thenreport the solution andstop.

4. Else in the optimal dictionary, pick any line with fractional constant.

(a) Rewrite the line by moving whole parts to the left so that
• the absolute constant on the right is a positive fraction (less than 1),
• the coefficients of variables on the right are negative fractions (less than 1 in absolute value).

(b) Make theright-hand side≤ 0 to form a new constraint (cut).

(c) Introduce a slack variable to the cut and add the resulting equation to the dictionary.

(d) Solve the resulting LP using the Dual Simplex method and then go back to 2.

Example. suppose that the dictionary contains

x1 = 5
2 − 3

2 x2 + 7
2 x3 + 2 x4

Rewrite by moving whole parts to the left so that the coefficient of variables on the right arenegative.

x1 = 5
2
︸︷︷︸

2+ 1
2

− 3
2

︸︷︷︸

−1− 3
2

x2 + 7
2

︸︷︷︸

4− 1
2

x3 + 2x4

x1 + x2 − 4 x3 − 2 x4 − 2 = 1
2 − 1

2 x2 − 1
2 x3

12.3. BRANCH AND BOUND 95

(Notice: x3 had positive coefficient+ 7
2 , and we had to take72 = 4− 1

2 to get a negative coeff on the right.)

The right-hand side is< 1 but must be integer (since lhs is). We introduce the cut that makes is at most 0.

1
2 − 1

2 x2 − 1
2 x3 ≤ 0 add slack→ new constraint x5 = − 1

2 + 1
2 x2 + 1

2 x3

12.3 Branch and Bound

For illustration, consider the toy factory problem
where toy soldiers are delivered in boxes of 20 and
toy trains in boxes of 25.

Max 6w1 + 5w2

4w1 + 5w2 ≤ 16
8w1 + 5w2 ≤ 20

0 ≤ w1 ≤ 2
0 ≤ w2 ≤ 3

w1, w2 integer

Notice that we also assume that the variablesw1

andw2 are upper-bounded (by2 resp.3).
1 2 3 4

1

2

3

4

¡

no integer
¢£¤¥¦ §¨©eª2 « 2

ª2 ¬ 1

Enumerating solutions by Branching

Consider the variablew2. Since we are only interested solutions where this variableis an integer, we can also assume
that w2 does not attain any value strictly between 1 and 2. This splits the feasible region onto two parts, one where
w2 ≤ 1 and one wherew2 ≥ 2. We solve the problem on each of the two parts independently and pick the better
of the two solutions. In other words, webranch into two subcases. In each of the subcases, we can again consider
an integer variable, sayw1, and exclude all fractional values between, say zero and one. We branch into two further
subcases and continue this process until the values of all integer variables have been determined. We can visualize this
using abranching tree.

w1 = 2

w2 = 0

z = 12

w1 = 2

w2 = 1

infeasible

w1 = 0

w2 = 0

z = 0

w1 = 1

w2 = 0

z = 6

w1 = 1

w2 = 1

z = 11

w1 = 0

w2 = 1

z = 5

w2≤1

w1≤1 w1≥2

w2≤0 w2≥1w2≤0 w2≥1

w1≤0 w1≥1 w1≥1w1≤0

w1 = 2

w2 = 2

infeasible

w1 = 2

w2 = 3

infeasible

w1 = 0

w2 = 2

z = 10

w1 = 1

w2 = 2

z = 16

w1 = 1

w2 = 3

infeasible

w1 = 0

w2 = 3

z = 15

w2≥2

w1≤1 w1≥2

w2≤2 w2≥3w2≤2 w2≥3

w1≤0 w1≥1 w1≥1w1≤0

96 CHAPTER 12. INTEGER PROGRAMMING

We evaluate the constraints in the leaves and the propagate best solution bottom-up.

w1 = 1

w2 = 2

z = 16

w1 = 2

w2 = 0

z = 12

w1 = 1

w2 = 1

z = 11

w1 = 2

w2 = 0

z = 12

w1 = 2

w2 = 0

z = 12

w1 = 2

w2 = 1

infeasible

w1 = 1

w2 = 0

z = 6

w1 = 0

w2 = 0

z = 0

w1 = 1

w2 = 0

z = 6

w1 = 1

w2 = 1

z = 11

w1 = 1

w2 = 1

z = 11

w1 = 0

w2 = 1

z = 5

w2≤1

w1≤1 w1≥2

w2≤0 w2≥1w2≤0 w2≥1

w1≤0 w1≥1 w1≥1w1≤0

w1 = 1

w2 = 2

z = 16

w1 = 1

w2 = 2

z = 16

infeasible

w1 = 2

w2 = 2

infeasible

w1 = 2

w2 = 3

infeasible

w1 = 1

w2 = 2

z = 16

w1 = 0

w2 = 2

z = 10

w1 = 1

w2 = 2

z = 16

w1 = 0

w2 = 3

z = 15

w1 = 1

w2 = 3

infeasible

w1 = 0

w2 = 3

z = 15

w2≥2

w1≤1 w1≥2

w2≤2 w2≥3w2≤2 w2≥3

w1≤0 w1≥1 w1≥1w1≤0

Optimal solution isw1 = 1, w2 = 2 with z = 16.

Using bounds in branching

We can shorten the branching process if we have someheuristics, a way tobound or estimate the value of the
objective function in subsequent subcases. For instance, in the above, if we somehow know that best possible value
in the subcasew2 ≤ 1 is at most 12, and we also know thatw1 = 0, w2 = 3 is a solution of value 15, then we don’t
need to branch into this subcase; the best solution that we would find there would be worse that the one we already
know. This idea is at the basis of the Branch-and-Bound method.

How do we find a bound on the objective?We solve the LP relaxation by some means:

1. Graphical method
2. Simplex algorithm
3. Special purpose algorithms, for instance:

(a) Knapsack - Fractional Knapsack
(b) TSP - Assignment problem
(c) Facility location - Network algorithms

Branch and bound using the Simplex algorithm

The process goes as follows: wesolve the LP relaxation of the problem. If the optimal solution is such that all
variables haveinteger values, then we have found aninteger solution and we are done. Otherwise, there is at least
one variable whose value isfractional . We use this variable to branch. Namely, suppose that the variable isxi and the
value isxi = a. We branch intotwo cases: (1) xi ≤ ⌊a⌋, and (2)xi ≥ ⌈a⌉. Note that this shrinks the feasible region,
since it cuts-off the solution that we used to branch (in thatsolution,xi had valuea, but in neither of the two subcases
xi can have this value). This way we always make progress and only branch close to the fractional optimum, which is
where the integer optimum is likely to be (if exists).

The LP relaxation can be solved by the Graphical method (for 2-dimensional problems). For more general problems,

12.3. BRANCH AND BOUND 97

we can use the Simplex algorithm andreusedictionaries in subsequent steps.

Integer program
Max 6w1 + 5w2

4w1 + 5w2 ≤ 16
8w1 + 5w2 ≤ 20

w1, w2 ≥ 0
integer

Max 6w1 + 5w2

4w1 + 5w2 + x3 = 16
8w1 + 5w2 + x4 = 20

w1, w2 ≥ 0 x3, x4 ≥ 0
integer

w1 = 1 + 0.25x3 − 0.25x4

w2 = 2.4 − 0.4x3 + 0.2x4

z = 18 − 0.5x3 − 0.5x4

Optimal fractional solution

The optimal solution is fractional, becausew2 = 2.4 is not an integer. We branch intow2 ≤ 2 andw2 ≥ 3.

w1 = 1

w2 = 2.4

z = 18

Subproblem 1 Subproblem 2

w2≤2 w2≥3

Subproblem 1:
w1 = 1 + 0.25x3 − 0.25x4

w2 = 2.4 − 0.4x3 + 0.2x4

z = 18 − 0.5x3 − 0.5x4

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

Subproblem 2:
w1 = 1 + 0.25x3 − 0.25x4

w2 = 2.4 − 0.4x3 + 0.2x4

z = 18 − 0.5x3 − 0.5x4

Bounds:

0 ≤ w1 ≤ ∞

3 ≤ w2 ≤ ∞

In both subproblems the dictionary is not feasible. To fix it,we use the Upper-bounded Dual Simplex method. Let us
first solveSubproblem 1.

w1 = 1 + 0.25x3 − 0.25x4

w2 = 2.4 − 0.4x3 + 0.2x4

z = 18 − 0.5x3 − 0.5x4

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

check lower bounds:0 ≤ 1 = w1, 0 ≤ 2.4 = w2

check upper bounds:w1 = 1 ≤ ∞, w2 = 2.4 6≤ 2

→ replacew2 by w2 = 2−w′2

w1 = 1 + 0.25x3 − 0.25x4

w′2 = −0.4 + 0.4x3 − 0.2x4

z = 18 − 0.5x3 − 0.5x4

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

check lower bounds:0 ≤ 1 = w1, 0 6≤ −0.4 = w′2
→ w′2 leaves, ratio testx3 : 0.5/0.4 = 1.25

x4 : no constraint
→ x3 enters

w1 = 1.25 − 0.125x4 + 0.625w′2
x3 = 1 + 0.5x4 + 2.5w′2
z = 17.5 − 0.75x4 − 1.25w′2

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

optimal solution found:

w1 = 1.25, w′2 = 0→ w2 = 2
z = 17.5

The optimal solution is fractional, sincew1 = 1.25. We branch onw1 ≤ 1 andw1 ≥ 2.

w1 = 1

w2 = 2.4

z = 18

w1 = 1.25

w2 = 2

z = 17.5

Subproblem 1

Subproblem 3 Subproblem 4

w2≤2 w2≥3

w1≤1 w1≥2

Subproblem 3:
w1 = 1.25 − 0.125x4 + 0.625w′2
x3 = 1 + 0.5x4 + 2.5w′2
z = 17.5 − 0.75x4 − 1.25w′2

Bounds:

0 ≤ w1 ≤ 1
0 ≤ w2 ≤ 2

Subproblem 4:
w1 = 1.25 − 0.125x4 + 0.625w′2
x3 = 1 + 0.5x4 + 2.5w′2
z = 17.5 − 0.75x4 − 1.25w′2

Bounds:

2 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

98 CHAPTER 12. INTEGER PROGRAMMING

We again solveSubproblem 3using the Upper-bounded Dual Simplex method.

w1 = 1.25 − 0.125x4 + 0.625w′2
x3 = 1 + 0.5x4 + 2.5w′2
z = 17.5 − 0.75x4 − 1.25w′2

Bounds:

0 ≤ w1 ≤ 1
0 ≤ w2 ≤ 2

check lower bounds:0 ≤ 1.25 = w1, 0 ≤ 1 = x3

check upper bounds:w1 = 1.25 6≤ 1, x3 = 1 ≤ ∞

→ replacew1 by w1 = 1−w′1

w′1 = −0.25 + 0.125x4 − 0.625w′2
x3 = 1 + 0.5x4 + 2.5w′2
z = 17.5 − 0.75x4 − 1.25w′2

Bounds:

0 ≤ w1 ≤ 1
0 ≤ w2 ≤ 2

check lower bounds:0 6≤ −0.25 = w′1, 0 ≤ 1 = x3

→ w′1 leaves, ratio testx4 : 0.75/0.125 = 6
w′2 : no constraint

→ x4 enters

x3 = 2 + 4w′1 + 5w′2
x4 = 2 + 8w′1 + 5w′2
z = 16 − 6w′1 − 5w′2

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

optimal (integer) solution found:

w′1 = 0→ w1 = 1, w′2 = 0→ w2 = 2
z = 16 → candidate integer solution

w1 = 1

w2 = 2.4

z = 18

w1 = 1.25

w2 = 2

z = 17.5

Subproblem 2

w1 = 1

w2 = 2

z = 16

candidate
solution

Subproblem 4

w2≤2 w2≥3

w1≤1 w1≥2

Now we go back and solveSubproblem 4. Sincew1 ≥ 2 we substitute:w1 = 2 + w3 wherew3 ≥ 0 is integer.

w3 = −0.75 − 0.125x4 + 0.625w′2
x3 = 1 + 0.5x4 + 2.5w′2
z = 17.5 − 0.75x4 − 1.25w′2

Bounds:

0 ≤ w3 ≤ ∞

0 ≤ w2 ≤ 2

check lower bounds:0 6≤ −0.75 = w3, 0 ≤ 1 = x3

→ w3 leaves, ratio testx4 : no constraint
w′2 : 1.25/0.625 = 2

→ w′2 enters

w′2 = 1.2 + 0.2x4 + 1.6w3

x3 = 4 + x4 + 4w3

z = 16 − x4 − 2w3

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w2 ≤ 2

optimal solution found:

w3 = 0→ w1 = 2, w′2 = 1.2→ w2 = 0.8
z = 16

Optimal solution is fractional, but its value isz = 16. Thus wedo not branch, since we already have acandidate
integer solutionof valuez = 16.

w1 = 1

w2 = 2.4

z = 18

w1 = 1.25

w2 = 2

z = 17.5

Subproblem 2

w1 = 1

w2 = 2

z = 16

candidate
solution

w1 = 2

w2 = 0.8

z = 16

×

w2≤2 w2≥3

w1≤1 w1≥2

12.3. BRANCH AND BOUND 99

Now we go back and solveSubproblem 2. Sincew2 ≥ 3, we substitutew2 = 3 + w4 wherew4 ≥ 0 is integer.

w1 = 1 + 0.25x3 − 0.25x4

w4 = −0.6 − 0.4x3 + 0.2x4

z = 18 − 0.5x3 − 0.5x4

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w4 ≤ ∞

check lower bounds:0 ≤ 1 = w1, 0 6≤ −0.6 = w4

→ w4 leaves, ratio testx3 : no constraint
x4 : 0.5/0.2 = 2.5

→ x4 enters

w1 = 0.25 − 0.25x3 − 1.25w4

x4 = 3 + 2x3 + 5w4

z = 16.5 − 1.5x3 − 2.5w4

Bounds:

0 ≤ w1 ≤ ∞

0 ≤ w4 ≤ ∞

optimal solution found:

w1 = 0.25, w4 = 0→ w2 = 3
z = 16.5

Optimal solution is fractional, but its valuez = 16.5 is more thanz = 16 of the candidate solution. It is still possible
that a better solution can be found by branching (here we ignore the fact that optimalz should also be an integer,
otherwise we would not need to branch). Sincew1 = 0.25, we branch onw1 ≤ 0 andw1 ≥ 1.

w1 = 1

w2 = 2.4

z = 18

w1 = 1.25

w2 = 2

z = 17.5

w1 = 0.25

w2 = 3

z = 16.5

w1 = 1

w2 = 2

z = 16

candidate
solution

w1 = 2

w2 = 0.8

z = 16

×

Subproblem 5 Subproblem 6

w2≤2 w2≥3

w1≤1 w1≥2
w1≤0 w1≥1

Subproblem 5:
w1 = 0.25 − 0.25x3 − 1.25w4

x4 = 3 + 2x3 + 5w4

z = 16.5 − 1.5x3 − 2.5w4

Bounds:

0 ≤ w1 ≤ 0
0 ≤ w4 ≤ ∞

Subproblem 6:
w1 = 0.25 − 0.25x3 − 1.25w4

x4 = 3 + 2x3 + 5w4

z = 16.5 − 1.5x3 − 2.5w4

Bounds:

1 ≤ w1 ≤ ∞

0 ≤ w4 ≤ ∞

Let us now solveSubproblem 5.

w1 = 0.25 − 0.25x3 − 1.25w4

x4 = 3 + 2x3 + 5w4

z = 16.5 − 1.5x3 − 2.5w4

Bounds:

0 ≤ w1 ≤ 0
0 ≤ w4 ≤ ∞

check lower bounds:0 ≤ 0.25 = w1, 0 ≤ 3 = x4

check upper bounds:w1 = 0.25 6≤ 0, x4 = 3 ≤ ∞

→ replacew1 by w1 = 0− w′1

w′1 = −0.25 + 0.25x3 + 1.25w4

x4 = 3 + 2x3 + 5w4

z = 16.5 − 1.5x3 − 2.5w4

Bounds:

0 ≤ w1 ≤ 0
0 ≤ w4 ≤ ∞

check lower bounds:0 6≤ −0.25 = w′1, 0 ≤ 3 = x4

→ w′1 leaves, ratio testx3 : 1.5/0.25 = 6
w4 : 2.5/1.25 = 2

→ w4 enters

w4 = 0.2 − 0.2x3 + 0.8w′1
x4 = 4 − x3 + 4w′1
z = 16 − x3 − 2w′1

Bounds:

0 ≤ w1 ≤ 0
0 ≤ w4 ≤ ∞

optimal solution found:

w′1 = 0→ w1 = 0, w4 = 0.2→ w2 = 3.2
z = 16

The solution has valuez = 16 which is no better than our candidate solution. We do not branch.

We now solveSubproblem 6. Sincew1 ≥ 1, we substitutew1 = 1 + w5, wherew5 ≥ 0 and integer.

w5 = −0.75 − 0.25x3 − 1.25w4

x4 = 3 + 2x3 + 5w4

z = 16.5 − 1.5x3 − 2.5w4

Bounds:

0 ≤ w5 ≤ ∞

0 ≤ w4 ≤ ∞

check lower bounds:0 6≤ −0.75 = w5, 0 ≤ 3 = x4

→ w5 leaves, ratio testx3 : no constraint
x4 : no constraint

→ no variable can enter→ infeasibleLP
Since the problem is infeasible, we do not need to branch anymore (no further restriction can make it feasible).

We now have solved all subproblems. We can thus summarize.

100 CHAPTER 12. INTEGER PROGRAMMING

w1 = 1

w2 = 2.4

z = 18

w1 = 1.25

w2 = 2

z = 17.5

w1 = 0.25

w2 = 3

z = 16.5

w1 = 1

w2 = 2

z = 16

candidate
solution

w1 = 2

w2 = 0.8

z = 16

×

w1 = 0

w2 = 3.2

z = 16
×

infeasible

×

w2≤2 w2≥3

w1≤1 w1≥2 w1≤0 w1≥1

We conclude that there exist an integer feasible solution (our candidate solution), and it is also an optimal integer
solution:w1 = 1, w2 = 2 of valuez = 16. This concludes the algorithm.

Branch and bound for Knapsack

Max z = 8x1 + 11x2 + 6x3 + 4x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 ∈ {0, 1}
z is integer

LP relaxation is called Fractional Knapsack. Can be solved by calculating prices of items per unit of weight and
choosing items of highest unit price first.

Item 1 2 3 4

Unit price 8
5 = 1.6 11

7 = 1.57 6
4 = 1.5 4

3 = 1.33

We pickx1 = 1, since item 1 has highest unit cost. The remaining budget is14− 5 = 9. Then we pickx2 = 1, since
item 2 has next highest unit cost. The budget reduces to9− 7 = 2. Then we pick item 3 which has next highest unit
cost, but we can only pickx3 = 0.5 and use up all the budget.

The total price isz = 8 + 11 + 0.5× 6 = 22. Sincex3 = 0.5, we branch onx3 = 0 andx3 = 1.

x1 = 1
x2 = 1

x3 = 0.5
x4 = 0

z = 22

Subproblem 1 Subproblem 2

x3=0 x3=1

Subproblem 2: x3 = 1

Max 8x1 + 11x2 + 6 + 4x4

5x1 + 7x2 + 4 + 3x4 ≤ 14 →
Max 6 + 8x1 + 11x2 + 4x4

5x1 + 7x2 + 3x4 ≤ 10

Again we pickx1 = 1 and budget reduces to10− 5 = 5 so we can pick onlyx2 = 5/7 from item 2. The total price
is z = 6 + 8 + 11× 5

7 = 21 6
7 . We branch onx2 = 0 andx2 = 1.

12.3. BRANCH AND BOUND 101

x1 = 1
x2 = 1

x3 = 0.5
x4 = 0

z = 22

Subproblem 1

x1 = 1
x2 = 5

7
x3 = 1
x4 = 0

z = 21 6
7

Subproblem 3 Subproblem 4

x3=0 x3=1

x2=0 x2=1

Subproblem 3: x2 = 0

Max 6 + 8x1 + 4x4

5x1 + 3x4 ≤ 10
pick x1 = 1 andx4 = 1 (budget is not used up completely)
the total price isz = 6 + 8 + 4 = 18 → candidate solution

Subproblem 4: x2 = 1

Max 17 + 8x1 + 4x4

5x1 + 3x4 ≤ 3

pick x1 = 3/5 and use up the budget
the total price isz = 17 + 8× 3

5 = 21.8
→ branch onx1 = 0 andx1 = 1

x1 = 1
x2 = 1

x3 = 0.5
x4 = 0

z = 22

Subproblem 1

x1 = 1
x2 = 5

7
x3 = 1
x4 = 0

z = 21 6
7

x1 = 1
x2 = 0
x3 = 1
x4 = 1

z = 18
candidate
solution

x1 = 3
5

x2 = 1
x3 = 1
x4 = 0

z = 21.8

Subproblem 5 Subproblem 6

x3=0 x3=1

x2=0 x2=1

x1=0 x1=1

Subproblem 5: x1 = 0

Max 17 + 4x4

3x4 ≤ 3
pick x4 = 1 and use up the budget
the total price isz = 17 + 4 = 21 → candidate solution

Subproblem 4: x1 = 1

Max 25 + 4x4

3x4 ≤ −2 probleminfeasible

102 CHAPTER 12. INTEGER PROGRAMMING

Subproblem 1: x3 = 0

Max 8x1 + 11x2 + 4x4

5x1 + 7x2 + 3x4 ≤ 14

pick x1 = 1 thenx2 = 1 which reduces the budget to2;
then we pickx4 = 2/3 to use the up the budget.
The total price isz = 8 + 11 + 4× 2

3 = 21 2
3

→ we do not branch, sincez must be integer and so best integer
subproblem of Subproblem 1 has valuez ≤ 21 but we already have a
candidate solution of valuez = 21

x1 = 1
x2 = 1

x3 = 0.5
x4 = 0

z = 22

x1 = 1
x2 = 1
x3 = 0
x4 = 2

3

z = 21 2
3

×

x1 = 1
x2 = 5

7
x3 = 1
x4 = 0

z = 21 6
7

x1 = 1
x2 = 0
x3 = 1
x4 = 1

z = 18
candidate
solution

x1 = 3
5

x2 = 1
x3 = 1
x4 = 0

z = 21.8

x1 = 0
x2 = 1
x3 = 1
x4 = 1

z = 21
candidate
solution

infeasible
×

x3=0 x3=1

x2=0 x2=1

x1=0

x1=1

Short comparison of Integer Programming Methods

1. Cutting planes – adds a constrain at each step, does not branch, once an integer solution found we stop

2. Branch-and-bound – branches into (independent) subproblems, does not add constraints, only changes bounds
on variables, if an integer solution is found, we cannot stop; all subproblems must be explored before we can
declare that we found an optimal solution

3. Dynamic programming – building up a solution by reusing (dependent) subproblems; more efficient than
Branch-and-Bound but only works for some problems (for instance, it works for the Knapsack Problem but
not so much for the Traveling Salesman Problem)

13
Dynamic Programming

Knapsack

Consider the Knapsack problem from the previous lecture.

Max z = 8x1 + 11x2 + 6x3 + 4x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 ∈ {0, 1}
z is integer

x1 = 1
x2 = 1

x3 = 0.5
x4 = 0

z = 22

Subproblem 1 Subproblem 2

x3=0 x3=1

Subproblem 1: x3 = 0
Max 8x1 + 11x2 + 4x4

5x1 + 7x2 + 3x4 ≤ 14

Subproblem 2: x3 = 1
Max 6 + 8x1 + 11x2 + 4x4

5x1 + 7x2 + 3x4 ≤ 10

Note that every subproblem is characterized by the set of remaining objects (variables) and the totalbudget (the right-
hand side). Observe that the above two subproblems only differ in the value of budget (as we can ignore the absolute
constant in the objective function). We should exploit thissymmetry.

Instead of solving just for 10 and 14, we solve the subproblemfor all meaningful values of the right-hand side (here
for values1, 2, . . . , 14). Having done that, we pick the best solution. This may seem wasteful but it can actually be
faster. To make this work efficiently, we branch systematically on variablesx1, x2, . . .

Let us describe it first more generally. Consider the problem(all coefficients are integers)

max c1x1 + c2x2 + . . . + cnxn

d1x1 + d2x2 + . . . + dnxn ≤ B

x1, . . . , xn ∈ {0, 1}
For everyi ∈ {1, . . . , n} andj ∈ {1, . . . , B}, we solve a subproblem with variablesx1, . . . , xi and budgetj.

103

104 CHAPTER 13. DYNAMIC PROGRAMMING

max c1x1 + c2x2 + . . . + cixi

d1x1 + d2x2 + . . . + dixi ≤ j

x1, . . . , xi ∈ {0, 1}
Let fi(j) denote the value of this solution. We want the value offn(B).

How can we calculatefi(j)? We observe that the optimal solution consisting of firsti items either contains thei-th
item or it does not. If it does not contain thei-th item, then the value offi(j) is the same as that offi−1(j); the best
solution using just the firsti − 1 items. If, on the other hand, an optimal solution using the first i items contains the
i-th item, then removing this item from the solution gives anoptimal solution for first i− 1 itemswith budget j− di.
(Convince yourself of this fact.) So the value offi(j) is obtained by takingfi−1(j− di) and adding the valueci of
item i. We don’t know which of the two situations happens, but by taking the better of the two, we always choose
correctly.

What this shows is that from optimal solutions to smaller subproblems we can build an optimal solution
to a larger subproblem. We say that the problem hasoptimal substructure.

As we just described, the functionfi(j) satisfies the followingrecursion:

fi(j) =

{
0 i = 0
max

{
fi−1(j), ci + fi−1(j− di)

}
i ≥ 1

We can calculate it by filling the table of all possible values.

fi(j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8

2 0 0 0 0 0 8 8
+$6

11 11 11 11 11 19 19 19

3 0 0 0 0 6 8 8 11 11 14 14 17 19 19 19

4 0 0 0 4 6 8 8 11 12 14 15 17 19 19 21

+$8 +$8 +$8 +$8 +$8 +$8 +$8 +$8 +$8 +$8

+$11 +$11 +$11 +$11 +$11 +$11 +$11 +$11

+$6 +$6 +$6 +$6 +$6 +$6 +$6 +$6 +$6 +$6 +$6

+$4 +$4 +$4 +$4 +$4 +$4 +$4 +$4 +$4 +$4 +$4 +$4

s

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 0, 10 0, 11 0, 12 0, 13 0, 14

1, 0 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10 1, 11 1, 12 1, 13 1, 14

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7 2, 8 2, 9 2, 10 2, 11 2, 12 2, 13 2, 14

3, 0 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8 3, 9 3, 10 3, 11 3, 12 3, 13 3, 14

4, 0 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8 4, 9 4, 10 4, 11 4, 12 4, 13 4, 14

(edges with no cost indicated have$0 cost)

The longest path (inbold) from s to t = (4, 14) gives the optimal solution.

Dynamic programming characteristics

– Problem can be divided into stages
– Each stage has a (finite) number of possiblestates, each associated a value.
– Next stage only depends on the values of states of the previous stage

105

Resource allocation

Knapsack with fixed costs.

Investment 1: investingx1 > 0 dollars yieldsc1(x1) = 7x1 + 2 dollars, wherec1(0) = 0
Investment 2: investingx2 > 0 dollars yieldsc2(x2) = 3x2 + 7 dollars, wherec2(0) = 0
Investment 3: investingx3 > 0 dollars yieldsc3(x3) = 4x3 + 5 dollars, wherec3(0) = 0

(Note that if no money is invested, then there is no yield; theyield is non-linear.)

Suppose that we can invest $6,000 and each investment must bea multiple of $1,000. We identify stages

stages: in stagei, we consider only investments1, . . . , i.

states: the available budget as a multiple of $1,000, up to $6,000.

values: fi(j) = maximum yield we can get by investingj thousands of $ into investments #1,. . . ,#i.

recursion: fi(j) =







0 i = 0

max
k∈{0,1,...,j}

{

ci(k) + fi−1(j− k)
}

i ≥ 1

Note: the arrow indicates from
which subproblem was an opti-
mal solution obtained

stage 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 9 16 23 30 37 44

2 0 10 19 26 33 40 47

3 0 10 19 28 35 42 490, 0

1, 0 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6

3, 6

$0

$0

$9 $16 $23 $30 $37 $44

$29 $25 $21 $17 $13 $9

$10

Network representation (some weights not shown for more clarity)

Inventory problem

A company must meet demand in the next four months as follows:month 1: d1 = 1 unit, month 2:d2 = 3 units,
month 3: d3 = 2 units, month 4:d4 = 4 units. At the beginning of each month it has to be determined how many
units to produce. Production has a setup cost of $3 and then $1for each unit. At the end of the month there is holding
cost $0.50 for each unit at hand. The company’s warehouse canstore up to 4 units from month to month. The capacity

106 CHAPTER 13. DYNAMIC PROGRAMMING

of the production line allows at most 5 units to be produced each month. Initially no products at hand. Determine the
minimum cost of production that meets the demand.

stages:production until (and including) monthi

states:number of units at hand at the end of monthi

values: fi(j) = the minimum cost of production that ends in monthi with j units in the inventory

For example, if we have 4 units at the end of month 2, then we meet month 3 demand of 3 units if we either

• do not produce and are left with 1 unit, held for $0.50 total cost $0.50
• pay setup cost $3, produce 1 units for $1, and are left with 2 units, held for $1 total cost $5.00
• pay setup cost $3, produce 2 units for $2, and are left with 3 units, held for $1.50 total cost $6.50
• pay setup cost $3, produce 3 units for $3, and are left with 4 units, held for $2 total cost $8.00

Note that in our calculation with already include the holding cost.

fi(j) = j× $0.50
︸ ︷︷ ︸

holding cost

+min







fi−1(j + di) no production k = 0

$3 + k× $1
︸ ︷︷ ︸

production cost

+ fi−1(j + di − k) production k ∈ {1, 2, . . . , j + di}

inventory

fi(j) 0 1 2 3 4

1 0 − − − −

2 4 5.5 7 8.5 10

3 8.5 10.5 13 15 17

4 13 15 16.5 18 20.5

5 20 − − − −

Shortest paths

All-pairs Shortest Paths: (Floyd-Warshall) given a networkG = (V, E) where each edge(u, v) ∈ E has length/cost
cuv, determine the distance between every pair of nodes.

We can solve this problem using dynamic programming as follows. We label the verticesv1, v2, . . . , vn.

stages:in stagei consider only shortest paths going through intermediate nodesv1, . . . , vi

values: fi(u, v) = minimum length of path fromu to v whose all intermediate nodes are amongv1, . . . , vi.

f0(u, w) =







0 u = w
cuw uw ∈ E
∞ uw 6∈ E

fi(u, w) = min
{

fi−1(u, w), fi−1(u, vi) + fi−1(vi, w)
}

for i ≥ 1

Single-source Shortest Paths:(Bellman-Ford) find distances from a fixed sources to all other vertices

107

stages:in stagei consider only shortest paths using at mosti edges

values: fi(u) = minimum length of a path going froms to u and having at mosti edges

We havef0(s) = 0 and f0(u) = ∞ for all u 6= s, since we cannot use any edge at this stage. For later stages:

fi(u) = min

{

fi−1(u), min
v∈V
vu∈E

{

fi−1(v) + cvu

}}

Knapsack revisited

max c1x1 + c2x2 + . . . + cnxn

d1x1 + d2x2 + . . . + dnxn ≤ B

x1, . . . , xn ∈ {0, 1}
fi(j) = optimal solution using firsti items and bag of sizej

fi(j) =







−∞ j < 0

0 i = 0

max
{

fi−1(j), ci + fi−1(j− di)
}

i ≥ 1

Alternative recursion (only for unbounded Knapsack)

Item Weight (lbs) Price ($)
1 4 11
2 3 7
3 5 12

→ fill a 10 pound bag

max 11x1 + 7x2 + 12x3

4x1 + 3x2 + 5x3 ≤ 10

x1, x2, x3 ≥ 0 and integer

g(j) = the maximum total price obtained by filling aj pound bag

recursion formula: g(j) = max
i∈{1,2,3}

j≥di

{

ci + g(j− di)
}

We try to put itemi into the bag and fill the rest as best as possible (note that here we need that we have unlimited
number of each item rather than just one; it would not work forbinary Knapsack).

j 0 1 2 3 4 5 6 7 8 9 10
g(j) 0 0 0 7 11 12 14 18 22 23 25

g(0) = 0
g(1) = 0
g(2) = 0
g(3) = max{c2 + g(3− d2)} = c2 + g(0) = 7 + 0 =
7

g(4) = max

{

c1 + g(0) = 11 + 0 = 11∗

c2 + g(1) = 7 + 0 = 7

g(5) = max







c1 + g(1) = 11 + 0 = 11

c2 + g(2) = 7 + 0 = 7

c3 + g(0) = 12 + 0 = 12∗

g(6) = max







c1 + g(2) = 11 + 0 = 11

c2 + g(3) = 7 + 7 = 14∗

c3 + g(1) = 12 + 0 = 12

g(7) = max







c1 + g(3) = 11 + 7 = 18∗

c2 + g(4) = 7 + 11 = 18∗

c3 + g(2) = 12 + 0 = 12

g(8) = max







c1 + g(4) = 11 + 11 = 22∗

c2 + g(5) = 7 + 12 = 19

c3 + g(3) = 12 + 7 = 19

g(9) = max







c1 + g(5) = 11 + 12 = 23∗

c2 + g(6) = 7 + 14 = 21

c3 + g(4) = 12 + 11 = 23∗

g(10) = max







c1 + g(6) = 11 + 14 = 25∗

c2 + g(7) = 7 + 18 = 25∗

c3 + g(5) = 12 + 12 = 24

108 CHAPTER 13. DYNAMIC PROGRAMMING

Optimal solution:g(10) = c1 + g(6) = c1 + (c2 + g(3)) = c1 + c2 + (c2 + g(0)) = c1 + c2 + c2

Best solution for a 10 pound bag: pick 2 items #2 and 1 item #1 for a total value of $25.

0 1 2 3 4 5 6 7 8 9 10

$11 $11 $11 $11 $11 $11 $11

$12 $12 $12 $12 $12 $12

$7 $7 $7 $7 $7 $7 $7 $7

Optimal solution (longest path) shown inblue color.

Scheduling

We have 7 jobsj1, j2, . . . , j7 with processing timesp1, p2, . . . , p7 given as follows:

job ji j1 j2 j3 j4 j5 j6 j7

processing
time pi

10 8 6 5 4 4 3

We wish to schedule all 7 jobs on 2 machines. The goal is to minimize the completion time of all jobs.

n jobs j1, . . . , jn
processing timesp1, . . . , pn

m machines

xij =

{
1 if job i scheduled on machinej
0 otherwise

min z

∑
j

xij = 1 i = 1, . . . , n

∑
i

pixij ≤ z j = 1, . . . , m

xij ∈ {0, 1}
stages:at stagei we schedule firsti jobs j1, . . . , ji

state: pair (t1, t2) denoting used up timet1 on machine #1 and timet2 on machine #2

value: fi(t1, t2) = 1 if it is possible to schedule firsti jobs on the two machines usingt1 time
on machine #1 andt2 time on machine #2;

fi(t1, t2) = 0 if otherwise

(Note that the order of the jobs does not matter here; only on which machine each job is executed.)

recursion: fi(t1, t2) =







0 t1 < 0 or t2 < 0

1 i = 0

max
{

fi−1(t1 − pi, t2), fi−1(t1, t2 − pi)
}

i ≥ 1

We either execute jobji on machine #1 or on machine #2. We pick better of the two options.

answer: is given by taking smallestt such thatf7(t, t) = 1

j1 j3 j5

j2 j4 j6 j7Machine#1

Machine#2

0 10 205 15
(How would you formulate the problem for 3 machines instead of 2?)

109

j1

j2 j3

j4

j5

j6 j7Machine#1

Machine#2

Machine#3

0 10 205 15

Average Completion time: longest job last, assign to machines in a round robin fashion→ optimal

j1

j2

j3

j4

j5

j6

j7Machine#1

Machine#2

Machine#3

0 10 205 15

Average completion time =8 3
7 ∼ 8.43 (note that movingj7 to any other machine does not change the average)

Traveling Salesman

A small company delivers from New York to its customers in neighboring cities (Washington, Pittsburgh, Buffalo, and
Boston). The distances (in miles) between cities are as follows.

New York (NY) 228 372 396 211
Washington (WA) 244 381 437

Pittsburgh (PI) 219 571
Buffalo (BU) 452

Boston (BO)

The company owns one delivery truck. In order to deliver to customers in all the 4 cities, the truck departs from New
York and visits each city in turn before heading back to New York. To save on fuel, the company wants to find a route
that minimizes the total distance the truck has to travel.

We can think of the route as follows. At each point of our journey, we are in some cityv and before coming tov we
have visited (traveled through) all cities inS (a subset of cities). Note that neither cityv nor New York (our starting
city) is in the setS.

stage: in stageS, we have travelled through all cities inS (a selected subset of cities)

state: city v, our current position on the route (after visiting all cities in S)

value: f (S, v) = the minimum cost of travelling from New York tov while visiting all cities inS

Our goal is to findf
({

WA, PI, BU, BO
}

, NY
)

. That is, we visit all cities and come back to New York.

In order to do so, we computef (S, v) for all possible values ofS andv. How do we do that? Observe that if we
visited all cities inS and then arrived tov, we must have arrived tov from some cityu in the setS. The total distance
of such a journey is then the distance fromu to v plus the minimum distance we need to travel in order to arriveto
u while visiting all cities inS \ {u}. We try all possible choices foru and select the one that minimizes the total
distance.

Let c(u, v) denote the distance from cityu to city v. Then the recursion is as follows:

recursion: f (S, v) = min
u∈S

(

f (S \ {u}, u) + c(u, v)
)

initial conditions: f (∅, v) = c(NY, v)

110 CHAPTER 13. DYNAMIC PROGRAMMING

We calculate the values off (S, v) for smaller sets first and
then gradually for bigger sets. Having done so in this order,
we canreuse the values we calculated earlier (for smaller
sets). This is themain principle of dynamic programming.
Let us calculate the values.

f (∅, WA) = c(NY, WA) = 228
f (∅, PI) = c(NY, PI) = 372
f (∅, BU) = c(NY, BU) = 396
f (∅, BO) = c(NY, BO) = 211
f ({WA}, PI) = min{ f (∅, WA) + c(WA, PI)}

= 228 + 244 = 472
f ({WA}, BU) = min{ f (∅, WA) + c(WA, BU)}

= 228 + 381 = 609
f ({WA}, BO) = min{ f (∅, WA) + c(WA, BO)}

= 228 + 437 = 665
f ({PI}, WA) = min{ f (∅, PI) + c(PI, WA)}

= 372 + 244 = 616
f ({PI}, BU) = min{ f (∅, PI) + c(PI, BU)}

= 372 + 219 = 591
f ({PI}, BO) = min{ f (∅, PI) + c(PI, BO)}

= 372 + 571 = 943

S \ v WA PI BU BO NY

∅ 228 372 396 211

{WA} 472 609 665

{PI} 616 519 943

{BU} 777 615 848

{BO} 648 782 663

{WA, PI} 691 1043

{WA, BU} 828 1061

{WA, BO} 892 1029

{PI, BU} 859 1043

{PI, BO} 1026 1001

{BU, BO} 1115 882

{WA, PI, BU} 1143

{WA, PI, BO} 1111

{WA, BU, BO} 1248

{PI, BU, BO} 1126

{WA, PI, BU, BO} 1354

f ({BU}, WA) = min{ f (∅, BU) + c(BU, WA)} = 396 + 381 = 777

f ({BU}, PI) = min{ f (∅, BU) + c(BU, PI)} = 396+ 219 = 615

f ({BU}, BO) = min{ f (∅, BU) + c(BU, BO)} = 396 + 452 = 848

f ({BO}, WA) = min{ f (∅, BO) + c(BO, WA)} = 211+ 437 = 648

f ({BO}, PI) = min{ f (∅, BO) + c(BO, PI)} = 211 + 571 = 782

f ({BO}, BU) = min{ f (∅, BO) + c(BO, BU)} = 211 + 452 = 663

f ({WA, PI}, BU) = min

{

f ({PI}, WA) + c(WA, BU) = 616+ 381 = 997

f ({WA}, PI) + c(PI, BU) = 472 + 219 = 691∗

f ({WA, PI}, BO) = min

{

f ({PI}, WA) + c(WA, BO) = 616 + 437 = 1053

f ({WA}, PI) + c(PI, BO) = 472+ 571 = 1043∗

f ({WA, BU}, PI) = min

{

f ({BU}, WA) + c(WA, PI) = 777+ 244 = 1021

f ({WA}, BU) + c(BU, PI) = 609+ 219 = 828∗

f ({WA, BU}, BO) = min

{

f ({BU}, WA) + c(WA, BO) = 777 + 437 = 1214

f ({WA}, BU) + c(BU, BO) = 609 + 452 = 1061∗

f ({WA, BO}, PI) = min

{

f ({BO}, WA) + c(WA, PI) = 648 + 244 = 892∗

f ({WA}, BO) + c(BO, PI) = 665 + 571 = 1236

f ({WA, BO}, BU) = min

{

f ({BO}, WA) + c(WA, BU) = 648 + 381 = 1029∗

f ({WA}, BO) + c(BO, BU) = 665 + 452 = 1117

f ({PI, BU}, WA) = min

{

f ({PI}, BU) + c(BU, WA) = 591+ 381 = 972

f ({BU}, PI) + c(PI, WA) = 615 + 244 = 859∗

f ({PI, BU}, BO) = min

{

f ({PI}, BU) + c(BU, BO) = 591+ 452 = 1043∗

f ({BU}, PI) + c(PI, BO) = 615 + 571 = 1186

111

f ({PI, BO}, WA) = min

{

f ({PI}, BO) + c(BO, WA) = 943 + 437 = 1380

f ({BO}, PI) + c(PI, WA) = 782+ 244 = 1026∗

f ({PI, BO}, BU) = min

{

f ({PI}, BO) + c(BO, BU) = 943 + 452 = 1395

f ({BO}, PI) + c(PI, BU) = 782 + 219 = 1001∗

f ({BU, BO}, WA) = min

{

f ({BU}, BO) + c(BO, WA) = 848 + 437 = 1285

f ({BO}, BU) + c(BU, WA) = 663 + 452 = 1115∗

f ({BU, BO}, PI) = min

{

f ({BU}, BO) + c(BO, PI) = 848 + 571 = 1419

f ({BO}, BU) + c(BU, PI) = 663+ 219 = 882∗

f ({WA, PI, BU}, BO) = min







f ({WA, PI}, BU) + c(BU, BO) = 691 + 452 = 1143∗

f ({WA, BU}, PI) + c(PI, BO) = 828 + 571 = 1399

f ({PI, BU}, WA) + c(WA, BO) = 859+ 437 = 1296

f ({WA, PI, BO}, BU) = min







f ({WA, PI}, BO) + c(BO, BU) = 1043+ 452 = 1495

f ({WA, BO}, PI) + c(PI, BU) = 892 + 219 = 1111∗

f ({PI, BO}, WA) + c(WA, BU) = 1026+ 381 = 1407

f ({WA, BU, BO}, PI) = min







f ({WA, BU}, BO) + c(BO, PI) = 1061+ 571 = 1632

f ({WA, BO}, BU) + c(BU, PI) = 1029+ 219 = 1248∗

f ({BU, BO}, WA) + c(WA, PI) = 1115+ 244 = 1359

f ({PI, BU, BO}, WA) = min







f ({PI, BU}, BO) + c(BO, WA) = 1043+ 437 = 1480

f ({PI, BO}, BU) + c(BU, WA) = 1001+ 381 = 1382

f ({BU, BO}, PI) + c(PI, WA) = 882 + 244 = 1126∗

f ({WA, PI, BU, BO}, NY) = min







f ({WA, PI, BU}, BO) + c(BO, NY) = 1143+ 211 = 1354∗

f ({WA, PI, BO}, BU) + c(BU, NY) = 1111+ 396 = 1507

f ({WA, BU, BO}, PI) + c(PI, NY) = 1248 + 372 = 1620

f ({PI, BU, BO}, WA) + c(WA, NY) = 1126+ 228 = 1354∗

Optimal solution:

f ({WA, PI, BU, BO}, NY) = f ({WA, PI, BU}, BO) + c(BO, NY)

= f ({WA, PI}, BU) + c(BU, BO)+ c(BO, NY)

= f ({WA}, PI) + c(PI, BU) + c(BU, BO) + c(BO, NY)

= f (∅, WA) + c(WA, PI) + c(PI, BU) + c(BU, BO)+ c(BO, NY)

= c(NY, WA) + c(WA, PI) + c(PI, BU) + c(BU, BO)+ c(BO, NY)

Travel from New York to Washington to Pittsburgh to Buffalo to Boston and back.

Thetotal travel distance1354 miles.

112 CHAPTER 13. DYNAMIC PROGRAMMING

452

571

437

452

219

381

571

219

244

437

381

244

219

381

572

437
452

452

219

244

452

381

571

244

452

571

381

244

452

219

427

244

571

219

437

381

452

571

437

452

219

381

571

219

244

437

381

244

211

396

372

228

source

228

372

396

211

(∅, WA)

(∅, PI)

(∅, BU)

(∅, BO)

({WA}, PI)

({WA}, BU)

({WA}, BO)

({PI}, WA)

({PI}, BU)

({PI}, BO)

({BU}, WA)

({BU}, PI)

({BU}, BO)

({BO}, WA)

({BO}, PI)

({BO}, BU)

({WA, PI}, BU)

({WA, PI}, BO)

({WA, BU}, PI)

({WA, BU}, BO)

({WA, BO}, PI)

({WA, BO}, BU)

({PI, BU}, WA)

({PI, BU}, BO)

({PI, BO}, WA)

({PI, BO}, BU)

({BU, BO}, WA)

({BU, BO}, PI)

({WA, PI, BU}, BO)

({WA, PI, BO}, BU)

({WA, BU, BO}, PI)

({PI, BU, BO}, WA)

({WA, PI, BU, BO}, NY)

The cost on edges indicates the increase in distance when that particular action (decision) is taken.

Optimal solution shown inblue – longest path fromsource to ({WA, PI, BU, BO}, NY).

14
Analysis of efficiency

In the previous chapters, we have discussed various computational methods for optimization problems such as finding
optimal solutions to linear programs (Simplex), finding optimal paths and flows in networks (Dijkstra, Ford-Fulkerson,
Network Simplex), solving integer linear programs (Cutting planes, Branch-and-Bound), and finally optimization
using recursive methods leveraging memory (dynamic programming).

Some of these methods allowed us to solve the same problem using different approaches (for instance, we can solve
shortest paths using the Simplex method, or Dijkstra’s algorithm, or dynamic programming). In order to understand
the benefits of these different methods, we need to be able to compare them in a uniform way. (We will be deliberately
vague; a rigorous treatment of this subject is beyond the scope of this text.)

Let us first discuss in rough numbers the number of steps (operations) of each of the methods.

Dynamic Programming

• stages1, 2, . . . , T
• states1, 2, . . . , M (for each stage)
• next stage computed from values ofpreviousstage
• recursive formula for the value of each state
• objective is the value of a specific state in thelast stageT
• using the recursive formula, we calculate the value forevery stageandevery state

– M stages
– T states
– altogetherM× T states to evaluate
– for each state and stage we look at allM states of the previous stage

and calculate the best answer→ M calculations

altogetherM2 × T calculations usingM2 memory

Simplex algorithm

The number of steps is proportional to the number ofbases(dictionaries) we go through. To do so, we need to make
sure not to encounter the same basis twice during the calculation (for instance, by Bland’s rule).

• n variables
• m equations (n ≥ m)
• each basis consists of a selection ofm variables→ at most

(
n

m

)

different bases

Therefore Simplex method takes at most(n
m) pivotting steps. This is roughlynm for smallm, but around2n for largem

(saym = n/2). Note that this seems like a very loose (and pessimistic) estimate. Does the worst-case really happen?
Can we get a better general estimate? Unfortunately, there are examples which exhibit this worst-case behaviour→

113

114 CHAPTER 14. ANALYSIS OF EFFICIENCY

Klee-Minty examples:

max
n

∑
j=1

10n−jxj

s.t.
(

2
i−1

∑
j=1

10i−jxj

)

+ xi ≤ 100i−1 (i = 1, 2, . . . , n)

xj ≥ 0 (j = 1, 2, . . . , n)

for n = 3, this looks as follows

max 100x1 + 10x2 + x3

s.t. x1 ≤ 1
20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10,000

x1, x2, x3 ≥ 0

If at every step the entering variable is chosen to be the one with largest coefficientin z, then the Klee-Minty examples
go through2n − 1 bases before finding the optimum.

Branch-and-Bound

• each subproblem is a linear program (solved by Simplex or other methods)
• only bounds on variables change→ sizeof the LP is thesamein each subproblem
• possibly2n subproblems (unavoidable in general, even if we branch exactly once on each variable)

Cutting Planes

• at each point we haveonly one linear program (no subproblems)
• each step adds one new constraint and one new variable
• the linear programgrowsat each step
• possibly2n steps before optimum reached (unavoidable in general)
• could be much worse than Branch-and-Bound once the size of the LP becomes too big

(recall that with BnB the LP remains the same size in all subproblems)

Network Algorithms

Dijkstra
• n nodes,m edges→ n steps (one for each node)
• each step involves: finding a smallest valued(u), and updating other valuesd(v)
→ roughly≈ 2n calculations

altogether≈ 2n2 operations (can be improved to≈ m log n with special data structures)

Ford-Fulkerson (Augmenting path algorithm)
• n nodes,m edges
• each stepconstructsthe residual network, finds anaugmenting pathand augments the flow
→ roughly≈ 2(n + m) operations for each step

• at mostn×m steps needed if shortest augmenting path is used (Edmonds-Karp)

altogether≈ 2n2m operations needed (can be improved to≈ nm by additional tricks)

Network Simplex (Cycle cancelling algorithm)
• n nodes,m edges
• each stepcalculatesshadow prices and reduced costs, finds a cycle (loop) and adjusts the flow
→ roughly≈ 2n + m operations for each step

• at most≈ nm log(Cn) steps needed if minimum mean-cost cycle is used (Goldberg-Tarjan)
whereC is largest cost of an edge

altogether≈ 2n2m log(Cn) operations needed (can be improved to≈ nm by additional tricks)

Other Network Problems
n nodes,m edges

14.1. ALGORITHMIC COMPLEXITY 115

1. Transportation Problem: same as Network Simplex≈ nm

2. Assignment Problem:the number of required steps can be shown to be at most
√

n
→ altogether≈ √nm operations need

3. All-pairs shortest paths (Floyd-Warshall):
• nodes are labeledv1, . . . , vn

• at each stepi we improve estimated(u, v) on the distance betweenu andv by considering paths fromu
to v passing throughvi (and some of thev1, . . . , vi−1)→ n3 calculations in each step

altogethern4 operations

4. Single-source shortest path (Bellman-Ford)with general edge costs (negative costs allowed)
• at stepi we consider paths usingi edges→ m calculations in each step

altogethern×m operations

14.1 Algorithmic Complexity

a way to compare efficiency (speed) of different computational methods (algorithms) and corresponding computational
problems.How to measure efficiency of algorithms?Standard practice is to ask:

“How doesthealgorithm scalewheninputs get large?”

i.e., how muchtime or memory f (n) it takes to compute a solution if the input data has sizen.

Algorithm

Input x

Algorithm A

OutputA(x)

An algorithmA
– takes aninput x (numbers),

– performs a certain number of operations (additions, multiplications),

– produces anoutput A(x) (a number, answer yes/no)

time complexity = number of (elementary) operations performed

space complexity= size of memory used during the computation

time ≥ space

f (n) = worst casetime complexity ofA for inputs of sizen
(maximum number of operations thatA performs on any input of sizen)

Asymptotic notation

We are interested in the behaviour off (n) asn goes to infinity. We use the following asymptotic notation.

3g

f

g

­

For two functionsf , g : R → R, we say thatf is O(g) “the order ofg”, and
write f = O(g), if there exist constantsc > 0 andN > 0 such that

f (n) ≤ c · g(n) for all n > N.

Example: let f (n) = n2 + n + 1 andg(n) = n2. Then f = O(g), since for
c = 2 andn > N = 2 we have

f (n) = n2 + n + 1 ≤ 2 · g(n) = 2n2

Growth of functions

We need to highlight the growth of various complexity functions we shall encounter.

116 CHAPTER 14. ANALYSIS OF EFFICIENCY

f (n)\n 2 3 5 10 20 50 100 1 000 10 000 100 000 1 000 000 10 000 000

log2 n 1 2 2 3 4 6 7 10 13 17 20 23

n 2 3 5 10 20 50 100 1 000 10 000 100 000 1 000 000 10 000 000

n log2 n 2 5 12 33 86 282 664 9 966 132 877 1 660 964 19 931 569 232 534 967

n1.5
3 5 11 32 89 354 1 000 31 623 1 000 000 31 622 777 1 000 000 000 31 622 776 602

n2
4 9 25 100 400 2 500 10 000 1 000 000 100 000 000 10 000 000 000

1 000 000
000 000

100 000 000 000
000

n2.5
6 16 56 316 1 789 17 678 100 000 31 622 777

10 000 000
000

3 162 277
660 168

1 000 000 000
000 000

316 227 766 016
837 933

n3
8 27 125 1 000 8 000 125 000 1 000 000 1 000 000 000

1 000 000
000 000

1 000 000 000
000 000

1 000 000 000 000
000 000

n4
16 81 625 10 000 160 000 6 250 000 100 000 000

1 000 000
000 000

10 000 000 000
000 000

100 000 000 000 000
000 000

2n
4 8 32 1 024 1 048 576

1 125 899 906
842 624

1 267 650 600 228 229 401 496
703 205 376

n! 2 6 120 3 628 800
2 432 902 008 176

640 000
30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568

960 512 000 000 000 000

nn
4 27 3 125 10 000 000 000

104 857 600 000 000 000 000
000 000

8 881 784 197 001 252 323 389 053 344 726 562 500 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000

1. The first block are what is consideredfast or practical algorithms (can handle inputs of size billions).

2. The second block areefficient algorithms (inputs can range up to size millions).

3. The last block are algorithms forhard problems (can only handle inputs up to size hundred or so).

Summary of complexity of selected problems

In the following, the input to each of the problems will consist of

– n numbers (orn + m numbers, orn×m numbers wheren ≥ m in case of LP)

– L will denote the number of bits needed to represent any of these numbers
(in a typical computer using IEEE754 floating point numbersL = 24, 53, 64, or 113)

Problem Time complexity Space complexity

Linear Programming (Simplex):n variables,m constraints 2O(n) O(n ·m)

Linear Programming (Interior point):n variables,m constraints O(n3L) O(n ·m)

Shortest path(Dijkstra): n nodes,m edges O(m + n · log(n)) O(n)

Shortest path(Bellman-Ford):n nodes,m edges O(m · n) O(n)

All-pairs Shortest paths (Floyd-Warshall):n nodes,m edges O(n4) O(n2)

Minimum Spanning tree (Prim, Kruskal):n nodes,m edges O(m · log(n)) O(m)

Assignment problem: n nodes,m edges O(
√

nm) = O(n2.5)

Maximum flow : n nodes,m edges O(m · n) = O(n3) O(m)

Minimum cost flow (Network Simplex):n nodes,m edges O(m2 · log2(n)) O(m)

0-1 Knapsack(Integer LP):n items 2O(n) O(n)

0-1 Knapsack(Dynamic program):n items, budgetB O(n · B) O(n · B)
Knapsack (Dynamic program):n items, budgetB O(n · B) O(B)

Machine Scheduling(Dynamic programming):
n jobs,m machines, completion timeT

O(n ·m · Tm) O(n · Tm)

Machine Scheduling(Integer LP) O(mn) O(n)

14.1. ALGORITHMIC COMPLEXITY 117

Inventory problem (Dynamic program):
n months, warehouse sizeM

O(n ·M2) O(n ·M)

Inventory problem (Integer LP) O(Mn) O(n)

Important note: recall that when we solving linear programs we have no guarantee that the solution we obtain will
be an integer point, even if there exists an optimal integer point. Finding an integer solution to a linear program is in
general difficult.

However, this is not the case for Network problems (Shortestpaths, Maximum flow, Minimum-cost flow).

Theorem 6. If all capacities/source supplies/destination demands/node net supplies are integers, then

(i) Everybasic feasible solutionto the Linear Program for Shortest path Problem (Maximum flowProblem, Trans-
portation Problem, Minimum-cost flow Problem) is integral (all variables are integers).

(ii) There exists anoptimal integer solution (to the above problems) because one such a solutionis basic.

(iii) Moreover, Dijkstra’s (Ford-Fulkerson, Transportation Simplex, Network Simplex) algorithm finds this solution
efficiently (in polynomial time).

So if your problem is a Network problem (or you can turn your LPinto an equivalent Network problem), then optimal
integer solution can be found efficiently (unlike using purely ILP techniques).

	Mathematical modeling by example
	Activity-based formulation

	Linear Programming
	Formulating a linear program
	Summary and further tricks

	Solving linear programs
	Graphical method
	Fourier-Motzkin Elimination (FME)

	Simplex method
	Canonical form
	Simplex method by example
	Two phase Simplex method
	Special cases
	Phase I.

	Linear Algebra Review
	Systems of linear equations
	Summary

	Sensitivity Analysis
	Changing the objective function
	Changing the right-hand side value
	Detailed example
	Adding a variable/activity
	Adding a constraint
	Modifying the left-hand side of a constraint

	Duality
	Pricing interpretation
	Duality Theorems and Feasibility
	General LPs
	Complementary slackness

	Other Simplex Methods
	Dual Simplex Method
	Upper-Bounded Simplex
	Lower bounds
	Dual Simplex with Upper Bounds
	Goal Programming

	Transportation Problem
	Transportation Simplex Method

	Network problems
	Shortest Path Problem
	Minimum Spanning Tree
	Maximum Flow problem
	Minimum-cost Flow problem
	Network Simplex Algorithm
	Network Simplex Algorithm with capacitites
	Complete example
	Summary

	Game Theory
	Pure and Mixed strategies
	Nonconstant-sum Games

	Integer programming
	Problem Formulation
	Cutting Planes
	Branch and Bound

	Dynamic Programming
	Analysis of efficiency
	Algorithmic Complexity

