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Mathematical modeling by example

Product mix

A toy company makes two types of toysoy soldiersandtrains. Each toy is produced in two stages, first it is
constructed in a carpentry shop, and then it is sent to a firgsghop, where it is varnished, vaxed, and polished. To
make one toy soldier costs $10 for raw materials and $14 bmrlat takes 1 hour in the carpentry shop, and 2 hours
for finishing. To make one train costs $9 for raw materials &b@ for labor; it takes 1 hour in the carpentry shop, and
1 hour for finishing.

There are 80 hours available each week in the carpentry and,00 hours for finishing. Each toy soldier is sold for
$27 while each train for $21. Due to decreased demand fordloljess, the company plans to make and sell at most
40 toy soldiers; the number of trains is not restriced in any.w

What is the optimumides) product mix (i.e., what quantities of which products to mpthatmaximizeghe profit
(assuming all toys produced will be sold)?

Terminology
decision variables X1y X2y eenyXjyons
variable domains values that variables can take x1,xp >0
goal/objective maximize/minimize
objective function: function to minimize/maximize 2x1 + 5xp
constraints: equations/inequalities 3x1+2xp <10
Example

Decision variables:
e x1=# of toy soldiers
e xp=# of toy trains
Objective: maximize profit

o $27 — $10 — $14 = $3 profit for selling one toy soldier>- 3x; profit (in $) for sellingx; toy soldier
e $21 — $9 — $10 = $2 profit for selling one toy train= 2x, profit (in $) for sellingx, toy train

= z = 3xy1+ 2x, profitfor sellingx; toy soldiers and:, toy trains
~—_———

objective function
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Constraints:

e producingx; toy soldiers and toy trains requires
(a) 1x1 + 1x, hours in the carpentry shop; there are 80 hours available
(b) 2x1 + 1x; hours in the finishing shop; there are 100 hours available
e the number; of toy soldiers produced should be at most 40

Variable domains: the numbers, x, of toy soldiers and trains must be non-negatsig restriction)

Max 3x1 + 2xp

xp + x2 < 80

2x1 + xp < 100

X1 < 40
X1, X2 > 0

We call this gprogram. It is alinear program, because the objective is a linear function of thuéstn variables, and
the constraints are linear inequalities (in the decisiambzdes).

Blending
A company wants to produce a certain alloy containing 30%,188% zinc, and 40% tin. This is to be done by mixing

certain amounts of existing alloys that can be purchasedrgdin prices. The company wishes to minimize the cost.
There are 9 available alloys with the following compositard prices.

[Aloy [ 1 2 3 4 5 6 7 8 9] Blend |

Lead (%) | 20 50 30 30 30 60 40 10 10 30
Zinc(%) | 30 40 20 40 30 30 50 30 10 30
Tin(%) |50 10 50 30 40 10 10 60 80 40
Cost($Mb)| 7.3 69 7.3 75 76 6.0 58 43 4/Iminimize

Designate alecisionvariablesxy, x», . . ., xg where
x; is theamount of Alloy i in aunit of blend

In particular, the decision variables must satisfy+ x, + ...+ x9 = 1. (It is a common mistake to choosgthe
absoluteamount of Alloyi in the blend. That may lead to a non-linear program.)

With that we can setup constraints and the objective functio

Min  7.3x7 + 6.9 + 7.3xg + 7.5xy + 7.6x5 + 6.0xg + 5.8¢; + 4.3xg + 4.1xg = z [Cost]
s.t. X1 + Xxp + x3 + x4 + x5 + x¢ + x7 + xg + x9 =1
0.2¢; + 0.5¢ + 0.3v3 + 0.3v4 + 0.3vr5 + 0.6xg + 0.4y + 0.1xg + 0.1x9 = 0.3 [Lead]
0.3x; + 0.4y + 0.2x3 + 0.4xy + 0.3v5 + 0.3xg + 0.5¢y + 0.3xg + 0.1x9g = 0.3 [ZinC]
0.5¢; + 0.xp + 0.5v3 + 0.3xy + 0.4x5 + 0.1xg + 0.1xy + 0.6xg + 0.89 = 0.4 [Tin]

Do we needill the four equations?

Product mix (once again)

Furniture company manufactures four models of chairs. Ehal requires certain amount of raw materials (wood/steel
to make. The company wants to decide on a production thatmizes profit (assuming all produced chair are sold).
The required and available amounts of materials are asifsllo
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| | Chair 1| Chair 2| Chair 3| Chair 4 || Total available]

Steel 1 1 3 9 4,4000 (Ibs)
Wood || 4 9 7 2 6,000 (Ibs)
[ Profit | $12 | $20 | $18 | $40 [ maximize |

Decision variables:
x; = the number of chairs of typieproduced
eachx; is non-negative

Obijective function:

maximize profitz = 12x7 4 20x; + 18x3 + 40x4
Costraints:

at most4, 400 Ibs of steel availablexr; 4+ x, + 3x3 4+ 9x4 < 4,400
at mostb, 000 Ibs of wood availabledx; + 9x, + 7x3 + 2x4 < 6,000

Resulting program:
Max 12x; + 20xp + 18x3 + 40x4 = z [Profit]

s.t. x1 + xp + 3x3 + 9x3 < 4,400 [Steel]
4x1 + 9x + 7x3 + 2x4 < 6,000 [Wood]

X1,X2,X3,X4 2 0
1.1 Activity-based formulation

Instead of constructing the formulation as before (rowrtmy), we can proceed by columns.
We can view columns of the programagtivities. An activity has

inputs: materials consumed per unit of activity (1lb of steel artus4df wood)
outputs: products produced per unit of activity ($12 of profit)
activity level: a level at which we operate the activity (indicated by aafalex;)
Hhorsteel Chairl $12 of profit
4lbs of wood—— X1
inputs activity outputs

Operating the activity “Chair 1” at level; means that we producg chairs of type 1, each consuming 1lb of steel,
41bs of wood, and producing $12 of profit. Activity levels alevays assumed to ben-negative

The materials/labor/profit consumed or produced by anisctve calledtems (correspond to rows).

The effect of an activity on items (i.e. the amounts of iteha &ire consumed/produced by an activity)iapeit-output
coefficients

The total amount of items available/supplied/requiredited theexternal flow of items.

We choos®bjective to be one of the items which we choose to maximize or minimize.

Last step is to writgnaterial balanceequationsthat express the flow of items in/out of activies and with ez$pio
the external flow.
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Example
Items: Steel External flow of items:
Wood Steel: 4,400Ibs of available (flowing in)
Profit Wood: 6,000Ibs of available (flowing in)
Objective:

Profit: maximize (flowing out)
Activities:
producing a chair of typéwherei = 1,2, 3,4, each is assigned an activity levgl

Chair 1: Producing 1 chair of type 1

consumes 1 |b of Steel llb of Steel— . 1 _
4 |bs of Wood 4lbs of Wood X — $12 of Profit
produces $12 of Profit o
Chair 2: Producing 1 chair of type 2
consumes 1 Ib of Steel llb of Steel— ..o .
—— $20 of Profit
9 Ibs of Wood 9lbs of Wood Xo
produces $20 of Profit o
Chair 3: Producing 1 chair of type 3
consumes 3 Ibs of Steel 3lbs of Steeb—| i 2 .
—— $18 of Profit
7 Ibs of Wood ZIbs of Wood— X3
produces $18 of Profit
Chair 4: Producing 1 chair of type 4
consumes 9 Ibs of Steel Olbs of Steeb—| . 4
—— $40 of Profit
2 Ibs of Wood 21bs of Wood X4
produces $40 of Profit -

The material balance equations:

To see how to do this, consider activity Chair 1: consumesiIBteel, 4lbs of Wood, and produces $12 of Profit.
Thus at levek;, we consuméx, Ibs of Steel4x; Ibs of Wood, and producEx; dollars of Profit.

1lb of Steel— . vt 12x 4+ .. [Profit]
Chxa'rl  $12 of Profit UCRE EZRE [Steel]
4lbs of Wood— 1 ok 4xg 4L [Wood]

On the right, you see the effect of operating the activityeselx;. (Note in general we will adopt a differesign
conventior; we shall discuss is in a later example.)

Thus considering all activities we obtain:

12x; + 20xy + 18x3 + 40x4 [Profit]
x1 + x4+ 3x3 + 9xy [Steel]
4x1 + 9xp + 7x3 + 2x4 [Wood]

Finally, we incorporate the external flow and objective: 00lbs of Steel availables, 000Ibs of Wood available,
maximize profit:

Max 12x1 + 20x; + 18x3 + 40x4 = z [Profit]

s.t. X1+ x2 + 3x3 + 9x4 < 4,400 [Steel]
4x1 + 9xp + 7x3 + 2x4 < 6,000 [Wood]

X1,X2,X3,X4 2 0



Linear Programming

Linear program (LP) in gtandard form (maximization)

max Xy 4+ x4+ ... 4+ ouxp Objective function
subjectto a;1x;  +  apxe + ...+ apxn < by
ax1 + amnxy + ... + apxn < b
. . Constraints
+ : : :
amXx1  +  amX2 + ...+ amnXn < by
X1,X2,...,xp > 0 Sign restrictions

Feasible solution(point) P = (p1, p2, ..., pn) is an assignment of values to the, ..., p, to variablesxy, ..., x,
that satisfiesll constraints andll sign restrictions.

Feasible region= the set of all feasible points.
Optimal solution = a feasible solution with maximum value of the objective fimr.

2.1 Formulating a linear program

1. Choose decision variables
2. Choose an objective and an objective function — lineactfan in variables
3. Choose constraints — linear inequalities

4. Choose sign restrictions

Example

You have $100. You can make the following three types of itmests:

Investment A. Every dollar invested now yields $0.10 a year from now, an@®1hree years from now.
Investment B. Every dollar invested now yields $0.20 a year from now and$two years from now.
Investment C. Every dollar invested a year from now yields $1.50 three y&a@m now.

During each year leftover cash can be placed into money rtsanitgch yield 6% a year. The most that can be invested
a single investment (A, B, or C) is $50.

Formulate an LP to maximize the available cash three yeans frow.

5
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Decision variablesy 4, x5, xc, amounts invested into Investments A, B, C, respectively
Y0, Y1, Y2, y3 cash available/invested into money markets now, and i3 &ars.

Max Y3
s.t. XA + XB + Yo = 100
01xy, + 02xg -— xXc + 1.06yy = 11
1.1xp + 106y;1 =
1.3x4 + 15xc + 106y, = y3
XA < 50
XB < 50
Xc < 50
XA, XB, XC, Yo, Y1, Y2, y3 > O
Activities
Markets Markets Markets External
Inv. A~ Inv. B lnv. C Now Yearl VYear?2 flow
Now -1 -1 -1 = —100
ltems Yearl| 0.1 0.2 -1 1.06 -1 = 0
Year2 1.1 1.06 -1 = 0
Year3| 1.3 15 1.06 maximize

Sign convention:inputs havenegativesign, outputs havpositive signs.
External in-flow hasiegativesign, external out-flow hgsositive sign.

We have in-flow of5100 cash “Now” which means we have$100 on the

right-hand side. No in-flow or out-flow of
any other item.

—— $0.1 Yearl Markets
$1 Now— [INV-A $1Now—| Now |— $1.06 Yearl
XA —— $1.3 Year3 Yo
—— $0.2 Yearl Markets
$1 Now— Inv.B $1Yearl—  Year1 |— $1.06 Year2
XB — $1.1 Year2 "
Inv. C Markets
$1 Yearl— nv. —— $1.5 Year3 $1Year2—| Year2 |— $1.06 Year3
e Y2
Max 1.3x4 + 1.5x¢ + 1.06y,
S.t. X4 + xp + Yo = 100
01xq + 02xp — x¢c + 1.06yp — 11 = 0
1.1XB + 1.06]/1 - Y2 = 0

]/0/ ]/1/ Y2 2 0

0 < XA, XB, XC < 50
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Post office problem

Post office requires different numbers of full-time empley®n different days. Each full time employee works 5
consecutive days (e.g. an employee may work from Mondayittaffor, say from Wednesday to Sunday). Post office
wants to hire minimum number of employees that meet its aaiyirements, which are as follows.

| Monday Tuesday Wednesday Thursday Friday Saturday Suhday
[ 17 13 15 19 14 16 11 ]
Let x; denote the number of employees thrt working in dayi wherei = 1, ...,7 and work for 5 consecutive days

from that day. How many workers work on Monday? Those that staMonday, or Thursday, Friday, Saturday, or
Sunday. Thug; + x4 + x5 + x¢ + x7 should be at leadt7.

Then the formulation is thus as follows:

mn x; 4+ x» + x3 + x4 + x5 + x¢ + x7
st xg + x4 + x5 + x5 + xy > 17
X1 + x + x5 + x + x = 13
X1 + x + x3 + x + x = 15
x1 + x2 4+ x3 + x4 + xy > 19
X1 + X2 + x3 + x4 + x5 > 14
X2 + x3 + x4 + x5 + X > 16
X3 + x4 + x5 + x5 + xyp = 11
X1, X2, ..., X7 2 0

| | Monday Tuesday Wednesday Thursday Friday Saturday Sunday |

Total 1 1 1 1 1 1 1 minimize
Monday 1 1 1 1 1 > 17
Tuesday 1 1 1 1 1 > 13
Wednesday 1 1 1 1 1 > 15
Thursday 1 1 1 1 1 > 19
Friday 1 1 1 1 1 > 14
Saturday 1 1 1 1 1 > 16
Sunday 1 1 1 1 1 > 11

(Simple) Linear regression

Given a set of datapoin{g 1, 2), (3,4), (4,7) } we want to find a line that most closely represents the datéporhere

are various ways to measure what it means "closely represéletmay, for instance, minimize the average distance
(deviation) of the datapoints from the line, or minimize than of distances, or the sum of squares of distances, or
minimize the maximum distance of a datapoint from the lineréthe distance can be either Euclidean distance, or
vertical distance, or Manhattan distance (vertical+hanrial), or other.

We choose to minimize the maximum vertical distance of atfoam the line. A general equation of a line with finite
slope has forny = ax + ¢ wherea andc are parameters. For a poift, ), the vertical distance of the point from the
liney = ax + ¢ can be written afj — ap — ¢|. Thus we want

Problem: Find constants, c such that the largest of the three valles- a — ¢|, |[4 — 3a — ¢|, |7 — 4a — c| is as smalll
as possible.

min max {IZ—a—c], |4 —3a—c|, ]7—4a—c]}
We want to formulate it as a linear program. Issues: nonnatyathe absolute value, the min of max.

e the min of maxaw > max{iy,i,...,it} ifand only ifw > iy andw > i and ... andv > i;
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Min  w

st. w > |2—1a—¢|
w > |4—3a—c|
w > |7—4a—c|

e absolute valuesy > |i| ifand only ifw > i andw > —i.

(in other words, the absolute valueiaé at mostw ifand only if —w <i < w)
Min
S.t. 2—a—c

—24a+c
4—3a—c
—4+3a+c
7—4a—c
—7+4a+c

SERSERSERS IR SERS
IV IVIVIVIVIV

S

e unrestricted sign: write = x™ — x~ wherex™, x~ > 0 are new variables

Min  w Min  w

st. w>2—at+a —c"+c st. w4+ at — a7 +ct —c > 2
w > —2+a"—a +ct—c w— at + a4 —ct+ e > =2
w>4-3a"+3a —ct +c” w4+ 3at —3a +ct —c > 4
w > —4+3a" -3a" +ct —c™ w—3at +3a —ct 4+ ¢ > —4
w>7—4a" +4a —ct+c” w+ 4at —4da + ¢t —c > 7
w > —7+4at —4a +ct —c” w— 4at + 40 —ct + ¢ > =7
wherea®, a=,ct,c=,w >0 at,a=,ct,cc,w > 0

Note

The above formulation on the rightssandard form of a minimization LP. We have already seen the standard bf
a maximization problem; this is the same except that we ni#grthe objective function and the signs of inequalities
switch (this is only done for convenience sake when we getliorsy LPs).

2.2 Summary and further tricks
Let us summarize what we have learned so far.

e Linear Program (LP) is an optimization problem where

— thegoalis to maximize or minimize #inear objective function
— over a set ofeasible solutions-i.e. solution of a set dinear inequalities
(forming thefeasible region.

e Standard form: all inequalities are<-inequalities (or all are>-inequalities)
and all variables are non-negative

— to get a<-inequality from a>-inequality we multiply both sides by 1 and reverse the sign
(this gives us an equivalent problem)

x1 — xp <100 = —x1 + x2 > —100
— to get inequalities from an equation, we replace it by twantabal inequalities, one witk¢ and one with>

x1 —xp = 100 — x1 —xp <100
x1 — xp > 100
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— eachunrestricted variable (urs) is replaced by thikfference of two new non-negative variables

oot xr+ +(x2—x3)+...
—=
X1 Urs Xp,x3 >0
— anon-positivevariablex; < 0 is replaced by theegativeof a new non-negative variabig
Lot X .. ce — R
1+ + (—x2) +
x;1 <0 xp >0

— absolutevalue: we can replaaenly in certain situations
x inequalities of typé f| < g wheref andg are arbitrary expressions:
replace by two inequalitief < gand—g < f
« if +|f| appears in thebjective function and we areminimizing this function:
replace+|f| in the objective function by a new variabtg and add a constraifnf| < x;.
(likewise if —|f| appears when maximizing)

— min of max: if max{fi, f2,..., ft} in the objective function and we areminimizing, then replace this
expression with a new variablg and add constraints < x; foreachi =1,...,t:

f<xn
R f2<x

...—i—max{fl,...,ft}—i—... — 1 )

X1 urs :
fi <x

— unrestricted expressionf can be written as a difference of two non-negative variables

e f A — o+ e-x) 4+
X2,x3 >0

Moreover, if we araminimizing, we can uset-x, and+x3 (positive multiples ofx,, x3) in the objective
function (if maximizing, we can use negative multiples).

In anoptimal solution the meaning of these new variables will be as follows:

« if f >0, thenx, = fandx; =0,

* if f <0, thenx, =0andx; = —f.
In other wordsx, represents thpositive part of f, andx; thenegative partof f (can you see why?). Note
that this only guaranteed to hold for an optimal solutiort that will be enough for us).

Exercise. Try to justify for yourself why these restrictions are neszy.



Solving linear programs

3.1 Graphical method

Max 3xq + 2xp

x1 + x < 80

2x1 + xp < 100

X1 < 40
X1, X2 > 0

1. Find the feasible region.

e Plot each constraint as an equatiarine in the plane

e Feasible points on one side of the line — plug in (0,0) to fintvahich

Xo X2
>

100 - 100 +

80 - E%

60 - 60 -

40 40 1

20 20 A X4+ X, < 80

A
20 40 60 80\ 100 X
Start withx; > 0andx, > 0 addx; + xp <80

10
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11

X2 X2
2%, + X < 100 2%, + %, < 100
> >
100 100
aoN N
60 60
40 - 40 ~
20 - X; + X, <80 f?eagsilgrlwe 20
> > <
: A\ t b, L b
20 40 Xo 8O\ 100  x 20 40 \60 80\ 100
add2x; + x, < 100 addx; < 40

A corner (extreme) pointX of the regionR = every line throughX intersectsRk in a segment whose one endpoint
is X. Solving a linear program amounts to finding a best cornartgni the following theorem.

Theorem 1. If a linear program has amptimal solution, then it also has aoptimal solution that is acorner point

of the feasible region.

Exercise.Try to find all corner points. Evaluate the objective funotdor; + 2x; at those points.

O corner points
(0,80)

40 -

feasible
region

A

20 - (40,20)

(OET

T

40,0) 60 X4

20(

160 = 3*0 + 2*80

180 = 3*20 + 2*60

601 highest value
= optimum)
40 1
feasibl
20 1 "e2sbe 160 = 340 + 2°20
.
, 4, :
30+2:0=0] 20 b_ 60 x
= 3*40 + 20

Problem: there may be too many corner points to check. There's a hettgr
Iso-valueline = in all points on this line the objective function has the samlele
For our objective8x; + 2x, an iso-value line consists of points satisfydiy + 2x, = z wherez is some number.

Graphical Method (main steps):

1. Find the feasible region.

2. Plot an iso-value (isoprofit, isocost) line for some value



12 CHAPTER 3. SOLVING LINEAR PROGRAMS

3. Slide the line in the direction of increasing value untdmly touches the region.

4. Read-off an optimal solution.

XA o,
AY
AY
100 +
R \‘
. \\
\80\ \ .
AY
AY

- \l' I\\ \I\‘ i
N 200 40+, 60 80\ X1
z=3x1+2%x; = 0\\\ \\\ ‘\\\ z=180
z2=60 z=120

Optimal solution is (x1, x2) = (20, 60).

Observe that this point is the intersection of two lines fimgrthe boundary of the feasible region. Recall that lines
we use to construct the feasible region come from ineqgeal{the points on the line satisfy the particular inequality
with equality).

Binding constraint = constraint satisfied with equality

For solution(20, 60), the binding constraints arg + x, < 80 and2x; + x, < 100 becaus&0 + 60 = 80 and
2 x 20+ 60 = 100. The constraink; < 40 is not binding because, = 20 < 40.

The constraint is binding because changing it (a little)assarily changes the optimality of the solution. Any change
to the binding constraints either makes the solution nahwgdtor not feasible.

A constraint that is not binding can be changed (a littlehwitt disturbing the optimality of the solution we found.
Clearly we can change; < 40 to x; < 30 and the solutior{20, 60) is still optimal. We shall discuss this more
in-depth when we learn about Sensitivity Analysis.

Finally, note that the above process always yields one diolf@ving cases.

Theorem 2. Every linear program has either

(i) a unique optimal solution, or
(i) multiple (infinity ) optimal solutions, or
(i) is infeasible (has no feasible solution), or
(iv) is unbounded(no feasible solution is maximal).
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3.2 Fourier-Motzkin Elimination (FME)

A simple (but not yet most efficient) process to solve lineaxgpams. Unlike the Graphical method, this process
applies to arbitrary linear programs, but more efficienthods exist. The FME method

finds a solution to a system of linear inequalities

(much like Gaussian elimination from Linear algebra whictu$ a solution to a system lifiear equations)

We shall discuss how this is done farinequalities and fominimization LPs. (Similarly it can be stated fof-
inequalities and maximization LPs.) You can skip to the eplerbelow to get a better idea.

First, we need to adapt the method to solving linear progralfesneed to incorporate the objective function as part
of the inequalities. Weeplacethe objective function by aew variablez and look for a solution to the inequalities
such that is smallest possible (explained how later).

0. Objective function c1x1 + c2xp + ... 4 ¢y x,: add a new constraint> c1x1 + cpxo + ... + cpXy

From this point, we assume that all we have is a systemr-ifiequalities with all variables on the left-hand side
and a constant on the right-hand side. (We chafg@equalities to>-inequalities by multiplying by—1.) We
proceed similarly as in Gaussian elimination. We try to @liate variables one by one Ipivotting a variable in
all inequalities (not just one). Unlike Gaussian elimination, we are dealiity inequalities here and so we aret
allowed to multiply by a negative constant when pivotting. This rieggla more complex procedure to eliminate

1. Normalize xq: if +cxq or —cxq wherec > 0 appears in an inequality, divide the inequalitydy

After normalizing, this gives us three types of inequaditithose with+x; (call thempositive inequalities),
those with—x; (call themnegativeinequalities), and those withowmi.

2. Eliminate x1: consider each positive and each negative inequality addteen together to create a new in-
equality.

Note that we do this foevery pair of such inequalities; each generates a new inequality withp Taking all
these generated inequalities and the inequalities thatatidontainy; in the first place gives us new problem,
one withoutx;. This new problem igquivalentto the original one.

3. Repeatthis process eliminatingy, x3, . . ., in turn until onlyz remains to be eliminated.
4. Solution: determine the smallest value othat satisfies the resulting inequalities.

5. Back-substitution: substitute the values in the reverse order of eliminatigorémuce values of all eliminated
variables.

In this process, when choice is possible for some variabéecan choose arbitrarily; any choice leads to a
correct solution (for more, see the example below how thitise).

Example
min  2x; + 2x, + 3x3
s.t. X1+ x+ x3 <2
2x1 + x <3
2xy + x3 + 3x3 > 3

X1,X2,X3 2 0

objective function

1. make the objective function into a constrain®> 2x; + 2x, +3x3 and change the objective toin z
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min z
st 2x1 +2x +3x3 — 2z <0
X1+ X + x3 <2
2x1 + x <3
2x1 + xp + 3x3 >3
X1,%X2,X3 2 0
2. change all inequalities to
—2x1 — 2xp — 3x3 +z > 0
—X1 — X2 — X3 > =2
—2x1 — X2 > =3
2x1 + x» + 3x3 > 3
X1 Z 0
X2 > 0
X3 > 0
3. Eliminatex;
b) add inequalities = add each inequality with
a) normalize = make the coefficients:of +x1 to every inequality with—x1;
one of+1, —1, or0 then remove all inequalities containing
—x1 — X — 3x3 + 32> 0 —3% +3z > 3
X — X2 — X3 > 2 —3% + 3x3 > —3
—x1 — 3% > -3 543 > 0
3 1
X1+ 3x + 3x; > 3 —X2 = ¥ + 3z 2 0
X1 > 0 X - X3 = 2
2 1
X > 0 —3%2 > -3
X3 > 0 X2 > 0
X3 > 0
Eliminatex,
— >
X2 + z ; :1‘3 2> 3
e 3x3 o X3 > -1
—xy — 2 1 >
X2 5X3 + 3z ; g _%x3 n %z > 0
. ; _3 —X3 > =2
—X2 ; _0 0> -3
X2 2
2%3 > 0 273 i 0
X3 > 0 3 z 0
Eliminatex;
—x3 + 32> 0 %Z > -1
—X3 > =2 0>-3
X3 > -1 %z > 0
X3 > 0 0> -2
z > 3 z > 3
0> -3 0> -3
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Final list of inequalities

O O N N N
VIV IV IV IV
w

4. Choose smallestthat satisfies the inequalities= 3

5. Back-substitution

—x3 + $x3> 0 x3 < 1
—X3 > =2 x3 <02
X3 > —1 x3 > —1
X3 > 0 x3 > 0
—X2 + 3> 3

—X2 + % > —1

—x — $x3 4+ 3Ix3> 0

—X2 — % > =2

—X2 > =3

X2 > 0

—x; — 0—3x3+4x3> 0
-x — 0 - : > -2
—x; — 2 %0 > -3
x1+%><0+%><1 > %

X1 > 0

Solutionx; = 3, x, =0, x3 = 4 of valuez = 3

Notes:

X2
X2
X2
X2
X2
X2

X1
X1
X1
X1

X1

e if at any point an inequalitdx; + Ox, + Ox3 + Oz

— no solution [nfeasible LP)

o if the final system does not contain an inequatity d

— no optimum (inbounded LP)

15
0 S X3 S 1
Choose ANY value that
satisfies the inequalities
X3 = %

<0 0<x <0

3
< 2 Choose ANY value that
< % satisfies the inequalities (this
< % time only one)
<3
> 0 Xy = 0
<3 $<m <3
< % Choose ANY value that
; 3 satisfies the inequalities
=2 (again only one)
> 3
Z 1
>0 x] = %

> dis produced wheré > 0



Simplex method

The process consists of two steps

1. Find afeasiblesolution (or determine thatone exist3.

2. Improve the feasible solution to aptimal solution.

Feasible ? > YES—~  Feasible vES_. Optimal
solution solution
Nvo NO
LPis L—Improve the solution—‘

infeasible

In many cases the first step is easy (for free; more on thaj late

4.1 Canonical form

Linear program (LP) is in aanonical form if

¢ all constraints arequations
e all variables ar@mon-negative

max c1X1 +  Cx2  + +  CnXn
subjectto apx;  +  apxy  + 4+ agxn = b
ar1X1 + A4pXxy» + 4+ ayxy, = by
+ : : :
X1+ ampX2 + ...+ AmnXn = bm
X1,%X2,...,%Xn = 0

Slack variables

To change a inequality to an equation, we adw® non-negativevariable called &lack variable.
x1+xp <80 — X1+ xp 451 =80

16
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x1+x2 > 80 — X1+ xp —ep =80
Notes:

e the variabler; is sometimes called aaxceswyariable
e we can use; for slack variables (whereis a new index)

max 3x; + 2x» max 3x1 + 2x»
X1 + x < 80 X1 + X2 + X3 = 80
2x1 + xp < 100 — 2x1 + Xxp + X4 = 100
X1 < 40 X1 + x5 = 40
x1,x3 > 0 X1,X2,%3,%4,%5 > 0

4.2 Simplex method by example

Consider the toyshop example from earlier lectures. Camwerqualities by addinglack variables

max 3x1 + 2x» max 3x; + 2xp
X1 + x < 80 X1 + X2 + X3 = 80
2x1 + xp < 100 — 2x1 + x + X4 = 100
X1 < 40 X1 + x5 = 40
x1,x3 > 0 X1,X2,%3,%4,%5 > 0
Xy X2 basic
100 + 100 + O feasible
o corner points solutions
INCED) N1 = %5 =0

60 - Xs=X%X,=0

40 1 40 1

feasible
20 + region

>
> ¥ + 1 1 p ¥ 1
©0)] 20 (43' 0 60 % x=x=0] 20 ¥ _ 60 x

(40,20) 20 J X, = X =

Starting feasible solution

Set variables, x, to zero and set slack variables to the values on the righd-biale.
— yields a feasible solution; = x, = 0, x3 = 80, x4 = 100, x5 = 40
Recall that the solution is feasible because all variablea@n-negativeandsatisfy all equations.
(we get a feasible solution right away because the rightsédfe is non-negative; this may not always work)

Note somethingnteresting: in this feasible solution two variables (namety, x,) are zero. Such a solution is called
abasic solutionof this problem, because the value of at least two variaklesrio.

In a problem withn variables andr constraints, a solution where at leést— m) variables are zero islaasic
solution.

A basic solution that is also feasible is calledasic feasible solutionBFS).
The importance of basic solutions is revealed by the folgaibservation.
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Basic solutionsare precisely theorner points of thefeasible region

Recall that we have discussed that to find an optimal solutican LP, it suffices to find &est solutionamong all
corner points. The above tells us how to compute them — they ardottsic feasible solutions

A variable in abasic solutionis called anon-basic variableif it is chosen to be zero.
Otherwise, the variable isasic

The basic variables we collectively calbasis

Dictionary

To conveniently deal with basic solutions, we use the steddictionary. A dictionary lists values of basic variables
as a function of non-basic variables. The corresponderaigténed by expressing the basic variables from the initial
set of equations. (We shall come back to this later; for n@weha look below.)

Express the slack variables from the individual equations.

max 3x; + 2xp
X1+ X + X3 = 80 x3= 80— x — X
201 + X + x4 = 100 — Xy =100 = 2% — X
x| + x5 = 40 Ys = 40— x
z = 0+ 3X1 + ZXZ
X1, X2, X3, X4, X5 > 0

This is called aictionary

e X1, Xp independentr(on-basiq variables
e X3, x4, x5 dependenti{asic) variables
o {x3,x4,x5} is abasis

setx; = xp, = 0 — the corresponding (feasible) solutiornig = 80, x4 = 100, x5 = 40 with valuez = 0

Improving the solution

Try to increaser; from its current valué in hopes of improving the value af

try x; = 20, xo, = 0 andsubstitute into the dictionary to obtain the values ©f, x4, x5 andz
— x3 = 60, x4 = 60, x5 = 20 with valuez = 60 — feasible

try againx; = 40, x, = 0 — x3 = 40, x4 = 20, x5 = 0 with valuez = 120 — feasible
now try x; = 50, xp = 0 — x3 = 30, x4 = 0, x5 = —10 — not feasible

How much we can increasg before a (dependent) variable becomes negative?

If x; =t andx, = 0, then the solution is feasible if

x3 = 80 — t—-02>0 t < 80
x4y =100 — 2t — 0 >0 - t < 50 = t < 40
x5 = 40 — ¢ >0 t <40

Maximal value isx; = 40 at which point the variable; becomes zero
x1 is incomingvariable andxs is outgoingvariable
(we say thatv; entersthe dictionary/basis, anck leavesthe dictionary/basis)

Ratio test

The above analysis can be streamlined into the followingkartratio” test.
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X3 ? — 80 x3 = 80 X1 — X \ratio forxy:
Xy : - - X2 100

100 - 10 _ =
Xy —— =50 x5 = 40 1 3 =
2 z= 04 3x1 + 2x,
40
X5 : T= 40 (watch-out: we only consider this ratio because the coefficient;ofs

negative(—2)...more on that in the later steps)
Minimum achieved withvs = outgoing variable

Expressy; from the equation foxsg
x5 = 40 — x1 — x1 = 40 — x5

Substitutex; to all other equations— new feasible dictionary

x; = (40 — xs5) x; = 40 — X5
X3 = 80—(40—9(5)—3(2 . x3 = 40 — xp + x5
X4:100—2(40—X5)— X2 X4 = 20 — X2+ZX5
z= 0+ 3(40 — x5) + 2x z = 120 + 2xp — 3x5
now x,, x5 are independent variables ang x3, x4 are dependent
— {x1,x3, x4} is a basis
we repeat: we increas@ — incoming variable, ratio test:
x71 : does not contait, — no constraint
40
c— =40
X2 1
20
:— =20
X4 1
minimum achieved fox, — outgoing variable
x4 = 20 — xp + 2x3 — xp = 20 — x4 + 2x5
x1 = 40 — X5 x1 = 40 — X5
Xy = (20 — x4 + 2xs5) . X = 20 — x4 + 2xs5
x3 = 40 — (20 — x4 + 2x5) + x5 x3 = 20 + x4 — x5
z = 120 + 2(20 — x4 + 2x5) — 3x5 z =160 — 2x4 + x5
x5 incoming variable, ratio test:
40
:— =140
X1 1
x5 : positive coefficient— no constraint
20
— =20
X3 1
minimum achieved fox; — outgoing variable
x3 = 20 + x4 — x5 — x5 = 20 + x4 — x3
x1 = 40 - (20+X4—X3) x1 = 20 + x3 — x4
Xy = 20—X4+2(20+X4—X3) . Xy = 60 — 2x3 + x4
X5 = (20 + x4 — x3) x5 = 20 — x3 + x4
z =160 — 2x4 + (20 + x4 — Xx3) z =180 — x3 — x4

no more improvement possible— optimal solution
x1 = 20,x, =60, x3 =0, x4 =0, x5 = 20 of valuez = 180
Why? settingrs, x4 to any non-zero values results in a smaller value of
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‘ Each dictionary igquivalentto the original system (the two have the same set of soljtions

Simplex algorithm

Preparation: find a starting feasible solution/dictionary

1. Convertto the canonical form (constraints are equa)itiy adding slack variables, 1, ..., Xy4m
2. Construct a starting dictionary - express slack varshtel objective function

3. Ifthe resulting dictionary is feasible, then we are dotith wreparation
If not, try to find a feasible dictionary using tfirhase |. method(next lecture).

Simplex step (maximization LP) try to improve the solution

1. (Optimality test): If no variable appears with g@ositive coefficient in the equation far
— STOP, current solution igptimal

e set non-basic variables to zero
¢ read off the values of the basic variables and the objedtinetionz

— Hint: the values are the constant terms in respective eunsti
e report this (optimal) solution

2. Else pick a variable; having positive coefficient in the equation for
x; = incomingvariable

3. Ratio test: in the dictionary, find an equation for a vaeah in which
e x; appears with a negative coefficient
e the ratioa is smallest possible

(Whereb is the constant term in the equation fg)
4. 1If no such such; exists— stop, no optimal solution, report thaP is unbounded

5. Elsex; = outgoing variable-> construct a new dictionary hyivoting

expressy; from the equation fox;,
add this as a new equation,
remove the equation for;,

[ ]
[ ]
[ ]
e substitutex; to all other equations (including the one fgr

6. Repeat from 1.

Questions:
e which variable to choose as incoming, which as outgoing
e is this guaranteed to terminate in a finite number of steps

e how to convert other LP formulations to the standard form

how to find a starting dictionary

how do we find alternative optimal solutions
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4.3 Two phase Simplex method

canonical form = equations, non-negative variables
n = number of variables

m = number of equations

basic solution= at least(n — m) variables are zero

basic solutions = dictionaries

basic feasible solutions = corner/extreme points = feasible dictionaries
Basic Optimal
Feasible ? YES—= Feasible YES— bt
Solution solution
NO NO
J{ L Improve the solution—]
LP is Infeasible ‘ LP is Unbounded
PHASE I. PHASE II.
X2

Feasibledictionary:xz = x4 =0

max 3x1 + 2x» . 20 4+ x .
1= 3 — X4

¥+ x < 80 basic
2x1 + xp < 100 80 solutions Xp = 60 = 2x3 + x4
x1 < 40 ﬁe;t;; x5 = 20 — x3 + X4
Xa=X,=0 z = 180 — X3 — Xa
X1,X2 > 0 60 3 4
X4 Infeasibledictionary:xz = x5 = 0
max3xq + 2xp 40 + X3=Xs =0
X1+ x+x3= 80 5 infeasible ¥ = 40 -
2x1 4+ X5 + x4 = 100 ! = 40 - x3 + x5
x1 + x5 = 40 20 - x4 = =20 + x3 + x5
z = 200 — 2x3 — x5
X1,X2,X3,X4,X5 2 0
—T s 6=0 % (it is infeasible sincery = —20)
4.4 Special cases
Alternative solutions
max xi + %XQ X3 =4 — 2% — X
St.2x1 + x < 4 x1 =3 — x3 — 2%
X1 + 2x <3 1
x,x > 0 z = X1 + 5x2

=3 — thusx; leavesix; =2 — $x, — $x3

- . 4
Pivoting: x; enters, ratio testrs : 5= 2,x4:
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1 1
X1 =2 — 3X2 — 3X3
xp=1— 3x + ix;
Z:2+OX2—%X3

Optimal solution (all coefficients non-positive) =2,x, =0,x3=0,x4 =1,z =2
Note thatx, appears with zero coeeficient in the expressiorx for
— increasingy, is possible, but does not affect the valuezof

: . . 2 1
we pivot againx, enters, ratio test; : —— =4, x4 : —— = 2/3 — thusx, leaves
1/2 3/2
X1 = g — %x:’, + %X4
X =3 4+ ixz — 3xy

z =2 — %Xg + Oxg
Again an optimal solutionr; = 3, x, = 2, x3 =0, x4 = 0,z = 2 — same value
What if we pivot again (omxy) ?

Unbounded LP

X2 =
max 2x; + Xxp 2= 2+ X
x3 =1+ x — x
st.—x; + x» <1 Xy =2 — x4+ 2 4
X1 — ZXZ <2 4 : 5 1 T 2
X1,%2 2 0 £ = 1 ¥
3_
Pivoting: x; entersx, leaves (the only choice}; =2 + 2x, — xy
2 p
X1 =2 + 2xp — x4
X3 =34+ xp — x4 1
z =4 4 5xp — 2xy4 / direction of

unboundedness

0 172 3 X

forx, = x4 = 0,we havex; =2,x3 =3,z2=4

— a feasible solution

What if we now increase,? no positive value af, makes one of1, x3 negative

— we can makex, arbitrarily large and thus makearbitrarily large—> unboundedLP
direction of unboundednesssetx, = t, x4 =0 — x1 =2+4+2t,x3 =3+t,z=4+5¢
for increasing — gives a sequence of feasible solution of increasing value
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Degeneracy

x4 =1 — 2x3
x5 =3 — 2x1 + 4x; — 6x3
X =2 4+ x1 — 3xp — 4x3
z = 2x1 — x3 + 8x3

N . 1 3 2
Pivotting: x5 enters, ratio testry : 5= 1/2,x5: A 1/2, x¢: 1= 1/2 — any ofxy, x5, x4 Can be chosen

— we chooser, to leavex; =  — 1x4

X3 = % — %X4
X5 = — 2x1 + 4x, + 3xy4 . . 1

settingx; = xp = x4 = 0yieldsx; = 5, x5 =0, x5 =
Xy = x| — 3% + 214 gxq X2 X4 Oy X3 71 X5 0, x¢ 0

z =4+ 2x1 — xp — 4x4

nowx; enters, ands leaves (the only choice); = 2x, — 3x4 — x5

X1 = 2xy + %X4 — %x5
_ 1 1 . .
X3 = 3 — 2% settingx, = x4 = x5 = O yieldsx; = 0,x3 = 3, x5 =0
_ 7 1 .
X = — X2 + 5X4 — 5X5 — same solutionas before
z=4+3x — x4 — x5

if some basic variable is zero, then the basic solutiategenerate

This happens, for instance, if there is more than one choicarf outgoing variable (the ones not chosen will be zero
in the subsequent dictionary)

Problem: several dictionaries may correspond to the same (degehsmution

The simplex rule may cycle, itis possible to go back to theesdiationary if we are not careful enough when choosing
the incoming/outgoing variables

Bland’s rule From possible options, choose an incoming (outgoing) léeig, with smallest subscript. ‘

Simplex method using Bland’s rule is guaranteed to termiivaa finite number of steps.

Alternative: lexicographic rule — choose as outgoing variable one whose row is lexicographismallest (when
divided by the constant term) — the coefficients in the olbjedunction are guaranteed to strictly increase lexjco-
graphically

4.5 Phasel.
max x3 — x2 + X3 xg = 4 —2x1 + xp — 2x3
st 2x; — xp +2x3 < 4 e — -5 _ D -
5 = X1 + 3xp X3
20 = 30 + X3 < -5 Yo = —1 + x1 — xp + 213
—X1 + X — ZX3 < -1 - — X1 — X» + x
X1,X2,X3 > 0 ! ? °

If we choose the starting basis to be gtack variables then the resulting dictionary ot feasible
— we letx; = xp = x3 = 0, we getxy = 4, x5 = —5, x4 = —1 — not feasiblebecauses < 0
We need to find a starting feasible dictionary for Phase Iid@ahis, wesolveadifferentproblem.

Intuition: we want to get a starting feasible solution where all vagal|, x», x5 are zero.
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Option 1
Add newartificial variables to each inequality as follows:
x1 + x < —100 — X1+ x —a < —100
X1 + xp > 100 — X1 + xp + a; > 100
x1 + xp = 100 — x1 + x2 + a; = 100
X1 + xp = —100 — X1 + xp —a; = —100
x1 + xp <100
X1 + xp > —100 — no change
X1 +x =0

New objective function: minimize thesum of all artificial variablesz; +a, + ...+ ap

Observethat setting all variables; to be 0 allows us to choose non-negative values for the gatifiariables
(a1 = 100 in the above) to obtain starting feasible solutionfor thisnew problem.

max x; — Xp + X3 min ap + as
st 2x; — xp + 2x3 < 4 St 2x1 — xp + 2x3 < 4
2x1 — 3xp + x3 < =5 2x1 — 3xp + x3 — ap < =5
—x1 + x» — 2x3 < —1 —x1 + xp — 2x3 — a3 < —1
X1,X2,X3 > 0 X1,X2,X3,02,03 > 0

Notice that if we now sek; = x, = x3 = 0 anda, = 5 andaz = 1, this satisfies all inequalities (feasible).
After adding the slack variables, we produce the corresipgrfeéasible dictionary as follows. Since we want the
maximization form, we also re write the objective functionasaxw = —a, — a3. Therefore

maxw = — dy — a3

s.t. 2x1 — Xp + 2x3 + x4 = 4
2x1 — 3xp + x3 — ap + X5 = -5
—x1 + x3 — 2x3 — a3 + x¢ = —1

X1,X2,X3,0a2,03, X4, X5, X6 > 0

If the optimal solution to this problem haggativevaluew, then the initial LP idnfeasible.
Otherwise, we producestarting feasible dictionary for Phase Il from the optimal dictiopaf Phase I.

To get a starting (Phase 1.) feasible dictionary, we take lzssssall artificial variables §,, a3) and add to thaslack
variables of equations that do not have artificial variables (1st eéqnatddxy).

Xg =4 — 2x1 + xp — 2x3

a =54+ 2x;1 — 3xp + x3 + x5

a3 =1 — x1 + xp — 2x3 + Xg
The final step is the objective functiem = —a, — a3 which we have to write in terms afon-basicvariables (so far
it is not since we chos® andaj to be basic). We substitute from the above equations:

a as

w = —a—a = —(54+2x1—-3x+x3+x5) — (1—x1+x—-2x3+%x5) = —6—x1+2x)+x3—
X5 — Xg

The resulting starting feasible dictionary it then as fato

Xg = 4 — 2x1 + xp — 2x3

a = 54 2x;1 — 3xp + x3 + x5
a3 = 1 — x1 + xp — 2x3 + Xg
w=—6— x1 + 2x + x3 — X5 — Xg
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Option 2

(for <inequalities): Introduceonenew artificial variablery and a new objectiver = —x

max —Xg max — Xy
St 2xy — xp + 2x3 — x9 < 4 St 2x1 — xp 4+ 2x3 — X0 + X4 = 4
2x1 — 3xp + x3 — x9 < =5 2x1 —3xp + x3 — Xxp + X5 =-5
—x1 + xp — 2x3 — xp < —1 —x1+ X2 —2x3 — Xg + x5 = —1
Xo,X1,%2,x3 = 0 Xo, X1, X2,X3,X4,X5,X > 0
Itis easy to get a starting feasible solution for this prablea starting feasible basis is as follows:
o take all slack variablest, x5, x¢)
e consider the inequality whose right-hand side is most megéin this case 2nd inequality)
e this inequality has an associated slack varialo, (femove this variable from our set {x4, x¢}
e addx in place of the removed variable {xg, x4, x4}
This is guaranteed to be a feasible basis (in this new prgblem
X0 = 5+ 2x1 — 3x + x3 + x5
X4 = 9 - ZXZ — X3 + x5
X¢ = 4 4+ 3x1 — 4xp + 3x3 + x5
w = -5 —2x1 + 3xp — x3 — X5
Example
Let us solve the above problem.
. 4
x, enters, ratio testrg : g Xy 5. Xl = 1 — thusxg leavesyy = 1+ 3x1 + 3x3 + %5 — 1%
x—2—1x—5x+1x+3x
0= e i 2% R
x—1—|—3x+3x+1x—1x
2 = e i 2% R
x*7—§x—§x+1x+1x
4 = 5% 53 55 5 %6
= -2 + 1x + 5x 1x 3x
v= gt TR T s gt
lettingx; = x3 = x5 = x¢ = Oyieldsxy = 2, x, = 1, x4 = 7 — feasible solution of valuey = —2.
NOW x5 €Nters, ratio testey | —=— = o, x4 —— = 2= _, thusxg leavesys = & — Lx + Ixs 4+ 3w — 2x
3 ) 0‘5/4—514'5/2—5 0 X3 =35 — 5X1 T 5X5 T 5X6 — 5X0-
x_11+3x+2x+1x_3x
2= 5 571 5%5 576 570
x*§—1x+1x+§x—éx
3= 5 511 575 576 50
X4 = 3 — x — x5 + 2x9
w = — X0

Feasible solutiorg = x; = x5 = x6 = 0, x, = ¥, x3 = §, x, = 3 of valuew = 0

Sincexy = 0, the solution is also feasible in the original problem.
Now drop the variable, and remove the auxiliary objective
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11 3 2 1
Xy = 5 + §X1 + ng + §x6
X3 = § — 13(1 + 1JC5 + §x6

5 5 5 5
Xy = 3 — x — X

Finally, introduce the original objective= x; — x, + x3
Note thatr, andx; appear ire but are not non-basic variables of the dictionary
— we must substitute them using the dictionary

X2 X3

11 3 2 1 8 1 1 3 1 1 2
Z:Jq—XQ+X3:xl—(§+—X1+§X5+3x6)+(3—§X1+§X5+3X6):—3+5X1—§X5+§x6

Thus the resulting starting feasible dictionary for thegyoral problem is as follows:

11 3 2 1
Xy = F + §x1 + gX5 + §x6
X3 = § — 13(1 + 1JC5 + §x6

5 5 5 5
X4 = 3 - x — X
z = —§ + lxl — 1JC5 + EJC6

5 5 5 5
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scalar=a number, could beeal like 7T = 3.14..., rational (fraction) Iike%, integer (whole) like5 or —6
(scalars “change scale” in proportion to their value)

vector = a sequence of numbers, for example: (3,1,0,2)
sometimes we write = {3 10 2} and say it is aow vector,

3

or we writex = (1) and say it is a&olumn vector
2
multiplying a vector by a scalar (“scaling”)
x = (x1,%2,...,%n) aisascalar a-x= (axy,axy,...,ax,)

For example ik = (3,1,0,2),then5-x=(5-3,5-1,5-0,5-2) = (15,5,0, 10)

adding vectors
x=(x1,x%,--, %) Y= (Y1, Y2,---,Yn) x+y=(x1+y1, X2+ Y2, ..., Xn+Yn)

For example ik = (3,1,0,2) andy = (0, —1,2,1),thenx +y = (3+0,1+ (—-1),0+2,2+1) = (3,0,2,3)

z=(-2,4) . x+y=(3,4)

xy=21+1-3=5

xz=0 2x=(4,2) x-y=|x|]y| cos(a)

217 =\5

x and z are x| =
orthogonal (90°) ly| = V12+32=V10
COS(QOO) =0 COS(G) = 5/(\/5—\/ﬁ) =1/\/§
a=45°
'3 '2 '1 4 5 6 7

27
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multiplying vectors = scalar product (“dot” product) of vectors
x=(x1,%2,..., %) Y= Y1Y2,---,Yn)  Xy=X1y1+X2Y2+ ...+ Xn¥n
For example ik = (3,1,0,2) andy = (0,—1,2,1),thenx .y =3-0+1-(-1)+0-2+2-1=1
scalar product = corresponds to thengle between the vectors

(more precisely, scalar productpsoportional to thecosineof the angle — for instance, the scalar product
equalszeroif and only if the two vector arerthogonal (perpenticular) to each other — the angle between
them is90°)

linear combination of vectorsx!, x2, ..., x" is

mxt 4+ ax® + .. 4 apx"
whereay, ay, . .., a,, are numbers (scalars). If eaghis between 0 and 1, anddf + a, + - - - + a,, = 1, then this is
called aconvex combination

For example, ifx = (3,1,0,2) andy = (0,—1,2,1), then0.2x + 0.8y = (0.6,0.2,0,0.4) +
(0,—0.8,1.6,0.8) = (0.6, —0.6,1.6,1.2) is a linear combination of andy. Moreover, it is a convex combi-
nation, since the coefficients are 0.2 and 0.8 (both betwee@) and).2 + 0.8 = 1.

y=(1.3) ey 25(3,3.5)
3+ 31 et
all convex
24 /comblnatlons
= 2=(1.7,1.6) - of x,y,z
1 ;= 0-7x+0.3y convex set
1 X,y,z extreme points
x=(2,1) =(2,1)
1 2 3 3

convex set= is a set of vectors such that whenever we take a convex catitmnof vectors from this set, then this
convex combination also belongs to the set

extreme pointof a convex set = cannot be written down as a convex combimafiother vectors
(every convex set is the set of all convex combininatiamasyex hull) of its extreme points)
1 0 3 1

matrix = 2-dimensional array of numbers, for example=

O N W
= W N
= O
N — O

m X n matrix hasm rows and: columns, entries of matriA area;; wherei is row andj is column

a aipp ... dn alj
a1 4y 2p azj )

A= ] ) ap ap - A i j-th column ofA
ml Am2 - Amn i-th row of A Amj

multiplying by a scalar
matrix A with entriesa;;, thenB = k - A is a matrixB with entriesb;; = k - a;;
10 2 0 6 2

W
—_

SON W

2
3
4

—_ O W
N~ O

6 4
4 6
0 8

N O

0
2
4
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adding matricesof the same size: x n

addingA with entriesa;; to matrixB with entriesb;; is a matrixC with entriesc;; = a;; + bj;

103 1 31 4 3 417 4
3240 2013| |5253
2301 |7lo214|T]2515
0412 30 3 4 3 4 4 6

multiplying matrices: matrix A of sizem x n multiplied by matrixB of sizen x k results in a matrix
C = A - B of sizem x k with entriesc;; wherec;; = bj1a1; + bjpag; + . .. + bjnay;
cij is thescalar product of i-th row of A with j-th column ofB

1031 3114 3 6 7 10 19
3240 2101 3 13 11 18 31
2 30 1] |oj2/1 4| |15(12 14 19 (2,3,0,1)-(1,0,2,0) = 2
041 2 31013 4 14 2 11 24

Note thatA - B is not the same aB - A
— except for this, matrix addition and multiplication obeyaetly the same laws as numbers
— from now onvector with m entries is to be treated agrax 1 matrix (column)

— for all practical intents and purposes, we can deal with icedrand vectors just like we deal with numbers

multriplying matrix by avector = just like multiplying two matrices

1 0 3 1 1 7
3240 (0] _|1n
2 3 01 21 | 2
0 4 1 2 0 2
transpose of a matrix rotate ann x n matrix A along its main diagonal, the resultingx m matrix AT
N a
A=|32 40 AT = X = xI=[1 0 3 1]
2 30 1 340 3
1 01 1

Note that(AT)T = A and(A - B)T = BT - AT

5.1 Systems of linear equations

A system of linear equations has the following form

apxy + apxy + ...+ apxn = by
a)x1 + apxpo + ... + apx, = by
X1 + appX2 + ...+ AmnXn = by

Using the matrix notation we can simply write it Ax = b where

a ain e a1n X1 bl

a1 A a2n X2 by
A= i . x=| . b=

Am1l Om2 -+ OAmn Xn b

Basisof solutions to the systeix = b
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N W=
W N O
O =W
=

B!

Let us multiply (from the left) both sides of the equation histmatrix:

—4
8/3
5/3

3 -2
-2 5/3
-1 2/3

CHAPTER 5. LINEAR ALGEBRA REVIEW

1

3

0

-4 3 =2

8/3 -2 5/3

5/3 -1 2/3

-4 3 =2 1
8/3 -2 5/3 3
5/3 -1 2/3 0
5

—-10/3

—4/3

This operation does not change the solutions to this sydfeme (nultiply with a non-singular matrix)

We can expand it back to the system of linear equations

X1 — bxy = 5
X2 + %x;; = —% — —
7 4
X3 + §X4 = —3

The system on the right is indictionary form.

X1 = 5 + 6X4
— 10 13

x2 —_ T - ? X4
4 7

X3 = — 3 - 33{4

We can read-off a solution by setting to some number and calculating the valuesgfx,, x5 from the equations.

In particular, we can set; = 0 in which caser; =5, x, =

— 1 andx; = —%

3-

How did we choose the matrix to multiply? We chose thénverse matrix of the first three columns.

This is so that the first three columns will be turned toitlentity matrixI =

1 0 3
Let us writeB for the matrix of first three column&8 = | 3 2 4

2 30
inverse matrix of a matrixB is a matrixB~! suchthaB=! - B =1
(the inverse matrix may not always exist — we shall ignore iggue

1 00
010
0 01

here)

How do we obtain an inverse matrix?we perform elementary row operations on the following nxatri

1 0 3{1 0 O
32 4(010
2 3 010 01

B I

elementary row operations

e multiply a row by a non-zero number
e add a row to another row
e exchange two rows

We callB thebasis matrix.

Let us try a different basis. Choose the 2nd, 3rd, and 4thmaotuofA corresponding to variables, x3, x4. (With a
slight abuse of notation, we say that,, x3, x4 } is ourbasis andx;, x3, x4 arebasic variables)
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0 3 1 0 31/1 00
B=|2 40 attach the identity matrix: 2 4 0/0 10
3 01 30 1|0 01
elementary row operations: multiply the 3rd row b /3 then add to the 2nd row
0 3 1|1 0 0 0 3 1|10 O
2 4 01(01 0 0 4 —3|0 1 —3
2 2 2 2
-2 0 —-5]0 0 —3% -2 0 —5]/0 0 —35
multiply the 1st row by—4/3 and then add to the 2nd row
4 4 T r 4 4
0 -4 —3|—-3 0 0 0 —4 3/—-3 0 0
2 2 4 2
0 4 5|0 1 -3 0 0 -2|-3 1 -3
2 2 2 2
-2 0 310 0 —3 | -2 0 -5, 0 0 -3
multiply the 1st, 2nd, 3rd row by-1/4, 1/6, —1/2 respectively; then add 2nd row to 1st and 3rd row
1 1 T r 11 1
01 3 3 0 0 01 o0 3 & —3
1 2 1 1 1 2 1 1
00 =315 & 9 00 —3|-5 &5 —3
1 1 2 1 2
1.0 3 0 0 35 | |10 0]-5 5 3
multiply the 2nd row by—1/2 and swap the order of rows to get the identity matrix on the lef
2 1 2
o1 0|3 1 -1 I B
9 6 9 01 0 1 1 1
o012 -1 1 g6
3 23 o0 1| 2 -1 1
100[-2 L 2 > 23
I B-1
Going back to our original systedix = b, we multiply byB~! from the left
B 'Ax=B"'b
2 1 2 r 7 r_2 1 2
5 & 3 103 1] | M 5 & 3 1
1 1 1 X2 | _ 1 1 1
5 % 9 3240 w| |5 & 9|3
2 11 2301 2 11 0
3 T2 3 L X4 L 3 —2 3
13 17 T 5
7 X2 | _ 11
g 010 w|=| B
-1 0 1] | x| | -2
X+ X = 1 o= f —
11 7
Lx1 + x3 =1 - = X3= 1§ — g4
5 1
- + = -] M= et an
5.2 Summary

Consider the maximization problem
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T T
max cpXp + CNXN

T

maxc-x XB
subjecttoAx = b subject to B | N . =1 b
x>0
XN

choose basic variables, ke denote thevector of basic variables

letB denote thdvasismatrix formed by taking the columns @&f corresponding to the basic variables

letcy denote the vector of the coefficientsobf the basic variables

letxy denote the vector of the remaining (non-basic) variabled)etc,y denote the vector of the corresponding
coefficients ot

5. letN denote the columns & corresponding to the non-basic variablesjin

PoODE

Then (assumin® ! exists) we can rewrite

Ax = b
Bxg+Nxy = b
B !(Bxg +Nxy) = B7lb
B 'Bxg+B !Nxy = B!b
xg+B INxy = B7b
xg = B b—B INxy

Now we can substituteg to the objective function:
z=clx=clxg+ cixy = ¢}, (B‘lb — B‘leN) +clxy =ciB b+ (C}r\, — cEB‘lN)xN

We put it together to obtain the corresponding dictionary:

xg = B — B~ INxy

z = ciB7b + (C}r\, — cEB‘lN)xN
From this we immediately see that the correspondiasjc solutionwhenxy = 0 is given as
xg =B~'b  with the value of the objective function z = c B~ 'b
The non-basic variables in the objective function éc%, - chle) xn. Their coefficients tell us whether or not

this solution is optimal. In other words, the solution isioptl(maximal) if (cIT\, — chle) <0.



Also calledpost-optimality analysisdetermining what effect (if any) do changes to the inputopgm have on the

optimality (feasibility) of a solution to the problem.

Motivation: often coefficients/values in a mathematical formulatiom anly best estimates; we need to know how

Sensitivity Analysis

much room for an error do we have, how sensitive the solutida the quality of these estimates.

Problem

Modified
Problem

Phase |
—

Initial
Dictionary
(Basis)

!

Modified
Initial
Dictionary

Modified problem is obtained by:

For what changes is the original optimal solution also optiim the modified problem?

changing the objective function
changing the right-hand side (rhs) of a constraint
adding a variable/activity

adding a constraint

For what changes is it feasible?

For what changes is the optimal basis also optimal in the fieaddoroblem?

Phase Il
—

Optimal
Dictionary
(Basis)

I

Modified
Optimal
Dictionary

How do we recompute modified optimal solution from optimadiba

How do we recompute modified optimal dictionary?

nonbasig .
SN Optmal
vars= 0 solution
N
Modified
— Optimal
solution

Key concepts:

e shadow prices a mechanism to assign pricest®ms(rows)

e reduced costs costs ofactivities(columns) in terms of shadow prices

33
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(We will come back to these later; for now, let us look at exasy)

Matrix notation

max C1X1 + Cxp2 + ... + CuXxy

subjectto ayx1 4+ apxy + ... 4+ axn = by

anx1 + anxo + ... + ayx, = by

A1 X1 + QX2 + ...+ AgnXp = by

X1,X2,+ -, Xn > 0

In matrix notation, we express it as follows:
X1 by ap1 4 e Ay
maXx cX X bz an an e Aoy
Ax=Db X = . b= . A= . ) . c=(c1,¢0,...,Cn)
©>0 : : . :

Xn by Am1l Am2 " Amn

When we pick a basis, we split variablesnto basicxg variables andon-basicxy. Same way we split into cp
andcy, and the matrixA splits intoB andN, whereB are the columns corresponding to basic variables,Nrtle
columns of non-basic variables. Then we can rewrite the LfBlksvs:
max CgXp + CNXN
Bxg +Nxy =b
x>0

Assuming thaB is non-singular, we have the inverBe! of B and so we can
expresg by multiplying the equation b ! from the left.

max X + CNXN
xg +B INxy =B~ b
x>0

Now we substituteg into the objective function.
(We can then express the corresponding dictionary.)

max cgB~ b + (eny — CBB’lN)xN xg= B b-— B~ !Nxy
xg + B 'Nxy =B~ b
x>0 z= CBB_lb + (CN — CBB_lN)XN

From this we can derive all important quantities:
value of theobjective function cgB~'b
values of thébasic variables B 'b
shadow prices cgB!

reduced costs ¢y — cgB7IN

Example

Let us illustrate this on our favourite example. We use b@sisx,, x5}.

max 3x; + 2x; g = (3,2,0) ey = (0,0
X1 + X2 + X3 = 80 B ( ’ ) N ( ’ )
2x1 + X7 + x4 = 100 X1 X
X1 + x5 = 40 Xp= [ X2 Ny
X1,%2,X3,%3,x5 > 0 X5
1 11 0 0 80 1 1 0 1 0
A= 21 010 b= 100 B = 21 0 N = 01
1 0 0 0 1 40 1 0 1 0 0
-1 1 0
the inverse oB is as follows:B~1 = 2 -1 0
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-1 1 0 80
basic variablesB~ b= 2 -1 0 100 | = (—80+ 100,160 — 100,80 — 100 + 40) = (20, 60,20)
1 -1 1 40
-1 1 0
shadow pricest = ¢gB~ ' =(3,2,00| 2 -1 0 | =(-3+4+0,3-2+0,0+0+0)=(1,1,0)
1 -1 1
10
reduced coststy — cgB"'N =¢, — 7N = (0,0) — (1,1,0) | 0 1 | =(0,0) - (1,1) = (—1,-1)
0 0

Max 3x; + 2xp

X1+ x <80

2x1 + xp < 100

X1 < 40
X1,Xp > 0

X4

z=1;>x1 + 2%, =180
6.1 Changing the objective function

optimal solutiony; = 20, x, = 60
change the coefficient = 3inz1t02.5 — z’ = 2.5x; +2x,
— the solutionr; = 20, x, = 60 still optimal, valuez’ = 170

'\\ Xo
N Z'=5x, + 2x, = 220
100 |,
80\\::\\ \‘\\ optimal
new N\ solution
optimal "~ +=253\ (same)
solution” o1 | )
z'=160
40 - > \::: N
201 /
/ %( =
’ ; T . N <.
20 new 40 60 ~._ ~. 80

optimal
solution
z'=240

223, + 2%, = 180> Z = 2.5%; + 2x, = 170

change; =3t0l — 2/ = x1 +2x,
— the solutiony; = 20, x, = 60 not optimal, valuez’ = 140
— better solutionc; = 0, x, = 80, valuez’ = 160 > 140
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change; = 3t05 — z/ = 5x; + 2x,
— the solutionr; = 20, x, = 60 not optimal, valuez’ = 220
— better solutionc; = 40, x, = 20, valuez’ = 240 > 220

problem formulation initial (feasible) dictionary optitrdictionary
MaX3xl+2x2 X3 = 80 — X1 — X2 X1 = 20 + X3 — X4
x1 + x < 80
x4 = 100 — 2x1 — xp Xy = 60 — 2x3 + x4
2x1 + x» < 100
N < 40 x5 = 40 — x x5 = 20 — x3 + x4
1 hS — — _ —
X1 > 0 z= 04 3x; + 2xp z = 180 X3 Xy
From any dictionary (basic vars above the line) we can alveapsess the objective function below the line
X1 X2

z =3x1 + 2xp = 3(20 4+ x3 — x4) + 2(60 — 2x3 + x4) = 60 + 3x3 — 3x4 + 120 — 4x3 + 2x4 = 180 — x3 — x4
This allows us to easily obtain a dictionary for the modifiedigem corresponding te; = 20, x, = 60

61:2.5 61:1 61:5
x1 = 20 + X3 — X4 xp = 20+ x3 — x4 xp = 20 + x3 — x4
xp = 60 — 2x3 + X4 xp = 60 — 2x3 + x4 Xxp = 60 — 2x3 + x4
x5 = 20 — x3 + X4 x5 = 20 — x3 + x4 x5 = 20 — x3 + x4
z = 2.5x1 + 2x7 z = x1 + 2x7 z = 5x1 + 2x
= 50 + 2.5x3 — 2.5x4 = 20 + x3 — x4 = 100 + 5x3 — 5x4
+ 120 — 4x3 + 2x4 + 120 — 4x3 + 2x4 + 120 — 4x3 + 2x4
z/ = 170 — 1.5x3 — 0.5x4 Z =140 — 3x3 + x4 z/ =220 + x3 — 3xy
optimal not optimal not optimal

Coefficient ranging

we want to find the range for the coefficientfor which the optimal solution remains optimal

X1 X2
D ————

, ——N— —_—— ~

Z = c1x1 + 2% = ¢1(20 + x3 — x4) + 2(60 — 2x3 + x4) =
= 20c7 + c1x3 — c1xq4 + 120 — 4x3 + 2x4

(20c1 + 120) + (1 — 4)x3 + (2 — ¢1)x4
—— N ——

<0 <0

Itis optimal if all coefficients are non-positve— ¢ —4<0and2—c; <0 — 2< <4

X1 X2
D ———

. ——— —_—— ~
Same for 2nd coefficient:  z/ = 3x; + cx0 = 3(20 + x3 — x4) + (60 — 2x3 + x4) =
= 60 + 3x3 — 3x4 + 60cy — 2cpx3 + coxg
= (6062 + 60) + (3 - 262)X3 + (Cz - 3)X4
—— e —

<0 <0
— 3—-2p<0andc; —3<0 — 15<c <3 - -

General formula

Changing the coefficient of x; in z to (¢; + A) — the value ofz changes byx;
7 = epxp+onxy +FAx; = z+Ax; = cgB b+ (e — tN)xy + Ax;
_\,_/

z
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Non-basic variable If x; is j-th non-basic variable, then only the coefficientpthanges irx, it is increased by,
we must sure it remains non-positive.
The original coefficient of; is the reduced co$f of x;, thej-th coefficientincy — 7rN.

c;+A<0 — solveforA — A< -7

Basic variable If x; is j-th basic variable, then all coefficientsothange; the coefficients change by\a wherea
is thej-th row of B~!N. The resulting coefficients must remain non-positive.
The original coefficients of variables inare the reduced costg; — TN.

(en—7N)—Aa<0 — solveforA

6.2 Changing the right-hand side value

Max 3x; + 2xp optimal dictionary
X1 + xp < 80 x1= 20 + x3 — x4
2x1 + x < 100 x; = 60 — 2x3 + x4  Optimal basis{xy, x2, x5}
X1 < 40 x5 = 20 — x3 + x4
X% >0 z = 180 — x3 — x4

change the coefficiety = 80 on the rhs of the 1st constraint¥0 — x; + x, < 70
— the pointx; = 20, x, = 60 not feasible
— new optimumx; = 30, x, = 40 butsame basig{xq, x5, x5}

change; to 50 — x1 + xp < 50
— the pointx; = 20, x, = 60 not feasible
— new optimumy; = 10, x, = 40 new basis{x1, xp, x4}

e nt(_ew I
S optima
N ~‘f/_ solution
S, z=220 optimal
~190 T “~\ solution
~k ><_ z=190 optimal
80 4 Sso solution
Ry . optifmal | z=170
~ ~+_solution "~
.60 - °

20 new 40 ~~60 ~~80

opltimal AN b, =70
solution b, = 50
z=160 1

changé; 1090 — x1 + x» <90
— the pointx; = 20, x, = 60 feasible bunhot optimal
— new optimunmx; = 10, x, = 80 same basis

change; 10110 — x1 + x, < 110
— the pointx; = 20, x, = 60 feasible bunhot optimal
— new optimumx; = 0, x, = 110 new basis{x,, x4, x5}
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Coefficient ranging

We want to find the values @f; for which the optimal basis remains optimal (optimal sa@uotmay not)

initial dictionary final dictionary

x3 = 80 — x4 — xp x1 = 20 + x3 — x4

x4 = 100 — 2x1 — xo X, = 60 — 2X3 + X4

x5 = 40 — xq x5 = 20 — x3 + x4

z= 04 3x1 + 2x; z =180 — x3 — x4
Changingh; = 80 to 80 + A; whereA; can be positive or negative. How does it change the finalatietiy?

X3 = (80+A1) - X1 — X2 (X3—A1) = 80 — X1 — X2 xé = 80 — X1 — X2
X4 = 100 — 2X1 - X2 X4 = 100 — 2X1 — X2 X4 = 100 — 2X1 - X2
X5 = 40—X1 X5 = 40—X1 X5 = 40—X1

z = 0 + 3x1 + 2xp z= 04 3x;1 + 2x; z= 04+ 3x; + 2x

wherex} = x3 — A4

same dictionaryexcept thatrs is nowx; — following the same pivotting steps
we pivot to the basigxy, x;, x5} and must reach theamefinal dictionary (withx} in place ofx3)

x1 = 20 + XI3—X4 xp = 20 + (X3—A1)—X4 X1 = (20—A1)+ X3 — X4
xp = 60 — ZXé + X4 xp = 60 — 2<X3—A1) + X4 Xy = (60+2A1) — 2x3 + x4
x5 = 20 — xg+x4 x5 = 20 — (X3—A1) + X4 X5 = (20—|—A1) — X3 + X4
z =180 — xf — x4 z =180 — (x3—A1) — x4 z = (180+4A1) — x3 — x4
final modified dictionary
When is this dictionary optimal? When itfeasible since all coefficients in are non-positive
It is feasible, ifx1, x5, x5 are non-negative. Setting the non-basic varialbles x4 = 0, we obtain
X1:20—A1 >0 A1§20
xp=604+2A1 >0 — A7 >-30 } —20< A1 <20
X5:20—|—A1 >0 A12—20
Try Ay = 10 — by =90, x1 = 10, x, = 80, z = 190 — exactlyas we saw before
A =-10— b1 =70,x1 =30,x, =40,z =170
Similarly for b, = 100 the coeff of the 2nd constrairt— b, = 100 + Ay —> substitute)cf1 =x4—NA)
xg = 20 + x3 — xfl xp = 20 + x3 — <X4—A2) X1 = (20+A2) + X3 — X4
xp = 60 — 2x3 + X:l xp = 60 — 2x3 + <X4—A2) Xy = (60—A2) — 2x3 + x4
x5 = 20 — X3+X:1 x5 = 20 — X3—|—<X4—A2) X5 = (20—A2)— X3 + X4
z =180 — x3 — x} z =180 — x3 — (x4— A7) z = (180+4A;) — x3 — x4
x1:20+A2 >0 AzZ—ZO
optimal if feasible— x, =60— A, >0 — Ay <60 } —20< A, <20
X5:20—A2 >0 A2§20
Finally, changingy; = 40, the rhs of the 3rd constrairt— b3 = 40 + A3 = substituter; = x5 — A3
x1 = 20 + x3 — x4 x1 = 20+ x3 — x4 x| = 20 + x3 — x4
X = 60 — 2x3 + x4 Xy = 60 — 2x3 + x4 Xy = 60 — 2x3 + x4
xé: 20 — x3 + x4 (x5 —A3) = 20 — x3 + x4 x5 = 204+ A3) — x3 + x4
z =180 — x3 — x4 z =180 — x3 — x4 z = 180 — x3 — x4

optimal if feasible— (20+A3) >0 — A3 > -20 = —20< A3 <
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General formula

Changing the rhs coefficieh to b; + A. Letd denote thé-the column of B~1. The dictionary changes:
xg= B b+ Ad- B~ INxy

z=cgB7'b + cgAd + (cy — cgB7'N)xy
We find for what values af\ the values okg are non-negative (if the non-basic variablgsare set to 0).
Xp = Ej_lz +Ad >0

old values
Shadow prices
Let us sumarize:
changingy; = 80to 80 4+ Ay changingh, = 100to 100 + A, changingh; = 40t0 40 + A3
xp = 20— x1 = 204A; X1 = 20
Xy = 60+2A1 Xy = 60—A2 Xy = 60
x5 = 204+ 4 x5 = 20— Ay x5 = 20+ A3
z = 180+ Aq z = 1804+ A, z = 180
for —20 < A1 <20 for =20 < A, <20 for =20 < Az < o0

if the change is within the above boundsfp A,, Az, then:

e increasingthe value ofb; by 1 unit increaseghe objective (profit) by 1

(decreasiny (decreases shadow
e increasing/decreasirig by 1 unit increases/decreases the profit prices
e increasing/decreasirig by 1 unit increases/decreases the profit $y

Economic interpretation: if instead of production we sell/rent all capacity (80 homrghe carving shop, 100 hours
in the finishing shop, 20 units of remaining demand) at shagleees $1/hour,$1/hour,$0/unit), we obtain the same
profit (80 x $1 + 100 x $1 + 20 x $0 = $180).

In fact, if we sell at$1/hour up t020 hours of capacity in the carving shop (sinte > —20) or we sell at$1
up to20 hours of capacity in the finishing shop (sinse > —20), and optimally produce toys using the remaining
capacity, then our profit does not change (rem&i&9). Similarly, if we obtain additional capacity &t/hour up to
20 hours in one of the shops (sintg < 20 andA; < 20), then profit remains the same.

Thus if we can obtain additional shop capacity at less gidhour, then it pays to do it (up to 20 hours) and
produce more toys using the additional capacity (yieldddigprofit). On the other hand, if we can sell shop capacity
at more thar$1/hour, then it pays to do it instead of using it for production

6.3 Detailed example

In the following LP, optimal solution is achieved for bagis, x3, x4 }

max z =2x7 — 3xp + x3 — X5
X1 — X2 + X3 + X4 =
—2x1 + XxXp — X3 + x5 =

2% + x3 + x4 — X5 =
X1, X2, X3, X4, X5 >

S O

Find ranges for individual coefficients of the objective étian and for rhs coefficients.

Using matrices

1. Basis{x,, x3,x4} — split the coefficients to the basis matBxand non-basic matriN
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— calculate the inverse @&, denotedB~! (recall from linear algebra how to do this)

1 1 1 -3 0 3 1 0
B cg=(—3,1,0
B=| 1 -1 0 Bl=| -1 11 N=[ -2 -1 i ((2 1))
— C - 7
2 1 1 1 1 0 0 1 N
1 1
-3 0 3
meeB = (310 4 -1 4| =G}
1 1 0
1 0
eov—cB IN=cy—nN=[(2,-1)—(3,-1,-%) | -2 1 =(-%,-%)
0 -1
1 1 1 1
-3 0 3 1 0 ~3 3
—IN — 1 1 _ - 5 4
BIN=| -1 -1 1 0211_3_3
1 1 0 N -1 1
1 1 5
-3 0 3 4 3
Blb=| -1 -1 1 1= 2
1 1 0 ? 5
2. Changing the right-hand side 1
~3
by: change fromi to 4 + A, the 1st column oB~! is —%
1
X =3 —3A>0 A<5
Xx3=3 — 3A > - A<2 — | -5<A<2
Xg =5+ A> —5<A
0
by: change from to 1 + A, the 2nd columnoB~1is | —1
1
X =3 +0A>0 0<3
x3=3%-— A> - A<?2 — |-5<A<}3
Xy =5+ A= —5<A

bz: change fron® to 9 + A, the 3rd column 0B~ is

1
|
N O Wk W
IN
>

=3+ 30 >0 —5<A
X3 =3 + iA > - —2<A
X4 =5+ 0A > 0<5

3. Changing the objective function coefficients
x1 : change fron2 to 2 + A — z changes byx;
x71 IS non-basic with reduced cost% (1st coeffincyy — wN) — coefficient ofx; in z is —%

only the coefficient oft; changes i — the new coeff is—% + A — must be non-positive

—2+A<0 - |AZ

wInN
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xp : change from-3 to —3 + A — z changes byAx,

x; is 1st basic variable, the coeffients(af, x5) in z change by—Aa wherea is the 1st row oB~IN

coefficients of(xy, x5) in z are the reduced costs, — 7N = (—%, —%) anda = (—3, —3)
the resulting coefficients must be non-positive (in ordetlie basis to remain optimal)
2 .1
2 ) . Jitas =
3 3
— <
() (T )=(8) %
3 3 5 +34 <
0
x3 : change froml to 1 + A — z changes byAx3, the 2nd basic variable, the 2nd rowBf !N = (%, —%)
2 _5
—z—3A <
3732 =
0 A>—¢ 2 1
2 4 - 1 - [ T5sAS2
—3+38 < A<s
0
x4 : change fron® to 0 + A — z changes byAxy, the 3rd basic variable, the 3rd rowBf 'N = (—1,1)
2 2
—%+A<0 A<z
> - - 7 — |-3<Aa<}
—3-A<0 A>3

x5 : changes from-1to —1 + A — z changes byxs, non-basic variable, only coe#% of x5 changes byA

2 2
—-5+A<0 — |A<3

Using dictionaries (optional)

1. Construct corresponding dictionary
Change rhs to (artificial) variablés, b, b3 and pivot to the basi§x;, x3, x4 }

X1 — Xo + X3 + X4 = b ‘xzz—b1+x1+x3+x4‘
T2t X% + x5 = b —2x1 + (~bi+xi+x3+x) — x3 + x5 = by
2xy + X3 + X4 — X5 = b3 2(—[71 + x1 +X3+X4) + X3 + X4 — X5 = b3
P —x1 + + x4+ x5 = bht+b
X4:b1+bz+x1—x5‘ 2x1 + 3x3 + 3xy — x5 = 2b; + b3

2x1 + 3x3 + 3(b1+b2—|—x1—x5) — x5 = 2b1 + b3

5x1 + 3x3 + — 4x5 = _bl —3b2+b3 X3 = —%bl—b2+%b3—%X1—|—%X5

substitute back ta, and then tov,:
X4 =b1+by+x1—x5 Xp = —bi+x1+x3+x4 = —by +x1 + (—3b1 — ba + 3b3 — 3x1 + 3%5)
+ (b +by +x1 —x5) = —3b1 + 3b3 + 3x1 + 35
substitute t@ — z = 2x1 — 3x2 + x3 — x5 = 2x1 — 3(—%171 + %bg + %xl + %x5)
+ (—%bl — by + %bg — %xl + %X5) — X5 = %bl —by — %bg — %xl — %x5

Xy = _%bl + %b3 + %xl + %x5

R ting dict X3 = _%bl — b + %b3 — %xl + %x5
esultn ICtionary:

9 y X4 = b1 + by + x1 — x5

2 2 2 2
z = gbl—b2—§b3—§x1—3x5
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2. Changing the right-hand side coefficients

by : changeh; = 4to4 + A, and leth, = 1 andb; = 9 the same. Check if the resulting values of basic variables ar
non-negative (remember to set the non-basic variablegt).ze

X = —1(4+A) +3>0 A<5

x3=—§(4+8) —1+320 — A<2 - [-5<A<0]
Xy = (4+4A) +1 > 0 —5<A

b, : change, =1to1+ A, letby =4 andb; =9

X = —3 +3>0 0<3

3= -3 —(1+8) +3>0 — A<?2 - |-5<A<3
xg = 4+ (1+4) >0 —5<A

b3 : change; =9t09+ A, lethy =4 andb, =1

X = —% + 309+4) >0 —5<A
x3=-3-1+309+A) >0 - —2< - [-2<A
xg = 4+ 1 > 0 0<5

3. Changing the objective function coefficients
setthe rhs backthy =4,b, =1,b3 =9andexpress = § —1— 28 — Zx; — $x5 = -8 — 2x; — 3x5
— changing the coefficient of; in z by A changes by exactlyAx;

x1: changex; to (2 + A)x; — =8Iy st A =B+ (34 A)x — x5
——
<
Thus—%+A <0 — A< 3 =0
xo: change—3x; to (=3 + A)x, —  Z=-8_2x - Zxs+Ax

substitutex, from the dictionary
=B -5 -5+ MG+ 30+ 35) = (B +A) + (-5 + 300 + (-5 +30)xs

N—— N——
Thus—% + 1A <0 — = <0
x3: changelxs to (14 A)x3 —  Z=-8 2y — x5+ Ax3 =
:—%— §x1 x5+A(% §x1+%x5)=(—%+§A)+(—%—§A)x1+(_§+ %A/)XS
—
2 5 2 <0 <0
~2_3A<0 _2< A <
5738S 5= 2 1
214A<0 T A<l ToEsfs
—3T3AS <2
x4: changedx, to (04 A)xy — =8 2y - Iyt Axg =
=8 2y - Zu+AG5+x —x5):(—T+5A)+(—§+A)x1+(;§—€)x5
e
—3+A<0 A< 2 <0 <0
2 2
2 — 2 — | -5 <A< %
~2-A<0 ~2<A 3 3
x5: change—x5 to (—1 + A)xs — =82y It Axs==-8 - Zx + (-3 + D)5
<0

2 2
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6.4 Adding a variable/activity

Toy cars: % hour carving, 1 hour finishing, sale pric$1
x¢ = the number of cars produced

Max 3x; + 2x; + Xe
X1 + X2 + X3 + %X(g = 80
2x1 + xo + X4 x¢ = 100
X1 + X5 = 40
X1,X2,X3, X4, X5, X6 2> 0
x3 = 80 — x1 — xp — %XG xp = 20 + x3 — x4 +
xg = 100 — 2x1 — xo — Xg . X = 60 — 2x3 + x4 + ¢
x5 = 40 — x x5 = 20 — x3 + x4 + ?xé
z= 04 3x1 + 2xp + xq z =180 — x3 — x4 + ?xq

We makexg non-basic— produce no carsg = 0 — previously optimal solution remains feasible
Is it also optimal? In other words, does it pay to produceZBrice outthe new variable

e pricing out an activity/variable/columes evaluating thecostof producing one unit of product (activity); in
terms of current shadow prices
e reduced cost= net contribution of one unit of; to the value of the objective function (profit)

the production cost in shadow prices

(multiply the coeffs inx;-th column by the

respective shadow prices and then sum up)

revenue from one unit ocf]
(the coefficient ofy; in z)

— if the reduced cost is positive, then it pays to produge
— if it is negative, then we are better-off producing othemige(which is equivalent to selling all available
resources at shadow prices)

Shadow pricesmy = $1, 1o = $1, 13 = $0
— one hour in each shop cost$ while each unit of remaining demand (3rd constraint) c68ts

cost of carving  cost of finishing
—N ——

Priceoutyg: m x5 + mx1 + mx0 = $1x4 +$x1+$0x0 = $1.50
sale price  production cost

~ =~ A~
Reducedcostafs: $1 —  $1.50 = —$0.50

Answer: it does not pay to produce toy cars, we would be lostif) for each unit (instead of producing other
products — shadow prices reflect the value of current praahict> current solution remains optimal

Note: notice that reduced costs goeeciselythe coefficients of non-basic variables in the last row ofidi@ary, the
z-value. If they are all non-positive, then we know the salntis optimal! Put differently, if reduced costs of all
non-basic variables (i.e. the coefficients)nare not positive, then we do not make more by producing arigade
items (making one of them basic and thus non-zero) and sethga is optimal.

Conclusion from this is that-0.5 is the coefficient ofg in the modified final dictionary

x1 = 20 + x3 — x4 + e

Xp = 60 — 2x3 + x4 + g To determine that the solution is optimal, \We not need to know
x5 = 20 — x3 + x4 + g all the other missing coefficients! More on that later. ..

z =180 — x3 — x4 — 0.5x¢

6.5 Adding a constraint

packaging 150 pieces of cardboard, 1 piece per each toyespld? pieces per each toy train
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new constraint:  x; + 2x, < 150
introduce a slack variabte,:  x¢ = 150 — x1 — 2xp
substitute from the final dictionary, = 150 — (20 + x3 — x4) — 2(60 — 2x3 + x4) = 10 4 3x3 — x4

Adding this to the final dictionary yields a feasible dictéow (since the valu&0 in the contraint is non-negative)
optimal solution remains optimal after adding the constrai

= 20+ x3 — x4 What if we only havel 30 units of cardboard?

xp = 60 — 2x3 + x4 - . . . o -

xs = 20 — x3 + x Then the original optimal solution becomes infeasible mtiodified prob-

xg = 10 + 3x3 — x4 lem (the constant term works out 610 instead ofl0) and we need to recal-
— — — culate (or use the Dual Simplex Method)

z = 180 X3 X4

Conclusion: so long as we have at least 140 units of cardbwabn’t need to change the production plan

6.6 Modifying the left-hand side of a constraint

Equipment shortages cause that toy soldiers require 3 lmothe finishing shop (instead of 2).

Original problem Initial dictionary Final dictionary
Max 3xl T 2x2 X3 = 80 — X1 — X2 X1 = 20 + X3 — X4
x1 + x < 80
x4y = 100 — 2x7 — xp Xp = 60 — 2x3 + x4
2x1 + xp < 100
X < 40 x5 = 40 — xp x5 = 20 — x3 + x4
L, > 0 z= 04 3x; + 2x; z =180 — x3 — x4
Modified problem Modified Initial dictionary
Max 3x; + 2x; . B B
whoms 80 BT T T
3x; + x» < 100 4 1 2 2
x5 = 40 — x4
. < 40 z= 04 3x; + 2x
X1,%2 2 0 N ! 2

Rearrange the terms in the dictionary and substit{ite- x4 + x; in the final dictionary £} in place ofx,)

o = 8- x - x xp = 20 + x3 — x} x1 = 20 + x3 — (xg+x7)
(x4+x1) = 100 — 2x; — x2 L, M= 60 — 2x3 + x} xp = 60 — 2x3 + (x4+x7)
x5 = 40 — x1 x5 = 20 — x3 + xfl x5 = 20 — x3 + (x4+x1)
z= 0 + 3x; + 2% z =180 — x3 — x} z =180 — x3 — (xg+x1)
Eliminatex; from the rhs by solving fox; from the first equation, and then substituting:
xp =60 — 2x3 + (x4 +x7) =60 — 2x3 + x4 = 10 + ixz — Ly
x1 =204 x3 — (x4 +x1) +(1O+%X3—%x4)—70—3x3—|—1X4 70 — 3y 4 L
2%y = 20 + x5 — x4 x5—20—X3+(X4—|—X1)—20—X3+X4 X2 = 2%3 2%4
(10+ 7X3 — —x4) = x3+ 1xy x5 = 30 — %xg, + %x4
x1 =10+ Jx3 — 314 2—180—x3—(x4+x1):180—x3—x4
(10—|— X3 — 2X4) = 170— 5X3 — % X4 z =170 — %xi’) - %X4

Conclusion: the optimal solution remains optimal.

What if we buy new machine that shortens the finishing proo&ts soldiers to 1.5 hour (instead of 2) ? Then current
optimal solution will no longer be optimak{x, will appear in thez value).

(Curiously, what happpens if it shortensawactly 1 hour? Then the finishing constraint is redundant.)



Duality

7.1 Pricing interpretation

Back to our usual manufacturing LP problem. For the sakdwddtilation, we drop the 3rd constraint, and consider the
items asblocks of woodndcans of pain{instead of shop hours).

Manufacturer Market
Max 3x; + 2x Prices:
x; + x < 80 [wood] y1 = price (in$) of one block of wood
2x1 + xp < 100 [paint] y2 = price (in$) of one can of paint
X1,Xy > 0

Manufacturer owns 80 blocks of wood and 100 cans of paint. atesell his stock at market prices or buy additional
stock at market prices. He can also produce and sell googs (ising the available stock.

What is his best strategy (assuming everything producddwisold)?
* Selling stock generates a profit&dy; + 100y5.

* If the cost (in market prices) of producing toy soldiersis strictly less than the sale price, i.e. if
y1+2y2 <3
then there igi0 limit on the profit of manufacturer. He can generate arbitrarilgdgrofit by buying additional
stock to produce toy soldiers in arbitrary amounts.

Why? The manufacturer can produegtoy soldiers by purchasing blocks of wood, an@x; additional cans of
paint. He pays (1 + 2y2) and make$x; in sales. Net profit is them; (3 — y; — 2y,). Now, if y; + 2y, < 3,
say ify; + 2y, < 2.9, then the net profit is them (3 — y; — 2y2) > (3 —2.9) = 0.1x3. So making arbitrarily
manyx; toy soldiers generates a profit@fix; (arbitrarily high).

* Similarly, no limit on the profit if the cost of producing toy trainsis less than the sale price, i.e. if
yi+y2<2

* Market prices ar@on-negative

Market (the competition) will not allow the manufacturemtmke arbitrarily large profit. It will set its prices so that

the manufacturer makes as little as possible. The markietissolving the following:

Min 80y; -+ 100y,
1 + 2y > 3 [toy soldiers]
vi +  y2 > 2 [toytrains]

yi,2 2 0

Dual of the manufacturing problem

45
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Estimating the optimal value

Max 3x1 + 2x;

x1 + xp < 80 [wood]
2x1 + xp < 100 [paint]
x1,x =2 0

Before solving the LP, the manufacturer wishes to get a quiagh estimate (upper bound) on the value of the optimal
solution. For instance, the objective functiorBis; 4+ 2x, which is certainly less thab; + 3x,, since the variables
X1, X, are non-negative. We can rewrite this3s; + x,) and we notice that; + x, < 80 by the first constraint.
Together we have:

z = 3x1+2x; < 3x1+4+3x < 3(x1+x) < 3x80 = $240

Conclusion is that every production plan will generate naerihan$240, i.e., the value of any feasible solution
(including the optimal one) is not more tha#40. Likewise we can write:

z = 3x1+2x < 4x1+2x < 2(2x1+x3) < 2x100 = $200
since2x1 + xp < 100 by the 2nd constraint. We can also combine constraints fewan better estimate:
z = 3x1+2x < (x14+x2)+ (2x1+x2) < 80 + 100 = $180
In general, we consider, > 0, y, > 0 and takey; times the 1st contraint #, times the 2nd constraint.
y1(x1 +x2) +y2(2x1 + x2) < 80y; + 100y,
We can rewrite this expression by collecting coefficientsoéndx,:
(y1+2y2)x1 + (y1 +y2)x2 < 80y1 + 100y2
In this expression, if theoefficientof x; is at least3 and the coefficient of, is at least2, i.e., if
y1+2y >3
yi+y2>2
then, just like before, we obtain an upper bound on the value-03x; + 2x,:
z = 3x1+2x < (11 +2)n+ (Y1 +y2)x2 = yi(x1+x2) +y2(2x1 +x2) < 80y1 + 100y2
If we want the best possible upper bound, we want this exjpreb® as small as possible.
Min 80y; + 100y,

51 I 252 E 5 ¢ TheDual problem
1 2 >
yi,y2 2 0

The original problem is then called tiRgimal problem.

Max 3x; + 2xp Min 80y; + 100y,
. X1+ x < 80 y1 + 2y >3
Primal 2%, + x5 < 100 v+ v > 2 Dual
x1,x =2 0 yi.y2 2 0
Matrix formulation
In general, for maximization problem witd inequalities, the dual is obtained simply by
. transp(_)smg (flipping around the diagonal) the ma#ix max cT'x min bTy
e swapping vectorb andc, T
e . . Ax<b Ay >c
e switching the inequalities t&, and
: . x>0 y=>0
e changingmax to min.
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7.2 Duality Theorems and Feasibility

Theorem 3 (Weak Duality Theorem)If x is any feasible solution of the primal ayds any feasible solution of the
dual, then Tx < bTy

In other words, the value any feasible solution to thelual yields an upper bound on the value of any feasible
solution (including the optimal) to therimal .

Ix < (ATy)Tx = (y'A)x =y"(Ax) <y'b =bTy
Consequently, iprimal is unboundedthendual must beinfeasibleand likewise, ifdual is unboundedthenprimal

must beinfeasible Note that is it possible that bottrimal anddual areinfeasible But if both arefeasible then
neither of them izinbounded

primal
d _ _ infeasible| feasible bounded unbounded v possible
u infeasible v O v _ _
a feasible bounde 0 v 0 Himpossible
| unbounded v 0 0

Strong Duality and Complementary Slackness

Theorem 4 (Strong Duality Theorem)If x is anoptimal solution to the primal ang is anoptimal solution to the

dual, then Ix — bTy
Moreoveryl (b — Ax ) = 0 andx? (ATy — ¢) = 0.
very ( x) X (Ay—9
slack in slack in
primal dual

In simple terms: whenever a constrainhist tight (has a positive slack) in thaerimal , then thedual variable corre-
sponding to this constraint must be 0. Converselygfimal variable is strictly positive, then the correspondihul
constraint must be tight (slack is zero).

This can be seen as follows (note tkat 0,y > 0, Ax > b andATy > ¢)
0<y'(b—Ax) =y'b—-y'Ax=bTy — (ATy)"x < bTy —Ix=0
0<x"(ATy—¢c) = (yTA - )x =yT(Ax) —Ix <y'b—cIx=bTy—'x=0

7.3 General LPs

If LP contains equalities or unrestricted variables, ttesebe also handled with ease. In particular,
equality constraint corresponds to anrestricted variable, andrice-versa

Why? Notice that when we produced an upper bound, we considergchon-negative/; > 0, since multiplying

the < constraint by a negative value changes the sigh nd thus the upper bound becomes a lower bound instead.
However, if the constraint was an equality (i.e. if we hadt- x, = 80 instead), we could allow negativg as well

and still produce an upper bound. For instance, we couleéwrit

3x1 + 2xp < 5x1 4+ 2xp = (—1) X (xl —|—x2) +3 X (2361 +XZ) < —80+3 x 100 = $220
) N—— N——
So we would makey; unrestricted. =80 <100

Conversely, if some variable in our problem, say were unrestricted in sign (could be negative as well), tlven
couldnot conclude thaBx; + 2x, < 4x1 + 2x, holds for all feasible solutions, as we did in our 2nd estenaamely
if x1 is negative then this isnot true (it is actually > rather than<). However, ifx; is unrestricted but, > 0, we
could still conclude thabx; + 2x, < 3x; + 2x, since the coefficient of; is not changing in this expression. In
our general expression, we hég + 2y, )x; and we demanded that the coefficignt- 2y, of x; is at least 3 for the
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upper bound to work. Ik; is unrestricted, we can simply insist that the coefficient + 2y, equals3 to make the
upper bound work.

The same way we can conclude that

> constraint corresponds to ann-positivevariable, andrice-versa

Primal (Max) Dual (Min)
i-th constraint< variabley; > 0
i-th constraint> variabley; <0
i-th constraint= | variabley; unrestricted
x; >0 i-th constraint>
x <0 i-th constraint<
x; unrestricted i-th constraint=
Max 3x; + 2xp + X3 Min 80y; + 100x; + 40x3
x1 + x4+ sx3 < 80 n+ 22+ ys =3
2x1 + xp + x3 = 100 y1 + Yo <2
g +x3 = 40 AR I L
X1 unrestricted y1 > 0
x <0 Yo unrestricted
x3 > 0 y3 <0
Primal Dual

7.4 Complementary slackness

max 6x; + X — X3 — X4
X1 + 2% + x3 + x4 <5
3x1 + xo — x3 <8
Xp + x3 + x4 =1

X2,X3, X4 2 0

X1 unrestricted
We wish to check if one of the following assignments is anroptisolution.
a)x;=2,x=1,x3=0,x4 =0
b) X1 :3,X2:O,X3:1,X4:O

To this end, we us€omplementary SlacknessLet us discuss the theory first.

Theory

As usual, letx denote the vector of variables, kebe the vector of coefficients of variables of the objectivection,
let A be the coefficient matrix of the left-hand side of our corietsga and letb be the vector of the right-hand side of
the constraints. Leg be the variables of the dual.

max clx min bTY

Ax < b PRIMAL ATy > ¢ DUAL
X y=>0

0
We say that vectors = (x1,...,x,) andy = (y1,...,yu) arecomplementaryif

IV IA

y'(b— Ax) =0 andx"(ATy —¢) =0
slack in slack in
primal dual

In other words,
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o whenevety; > 0, thenx satisfies the-th constraint with equality (“the constrainttight”)
e whenevetry; > 0, theny satisfies theé-th constraint of the dual with equality

Exercise.Show that the shadow pricesdefined by (a basic solutiow)are always complementary o

Recall thatStrong Duality this says that ik is an optimal solution to the primal andis an optimal solution to the
dual, thenc™x = bTy. In fact, more is true.

Complementary Slacknesgand some consequences): Assumehatan optimal solution to the primal.

e If y is anoptimal solution to the dual, thex andy arecomplementary.
¢ If yis afeasiblesolution in the dual and isomplementaryto x, theny is optimal in the dual.
e Thereexistsafeasiblesolutiony to the dual such that andy arecomplementary.

Notice that the last bullet follows from our observation abshadow prices. Another consequence of this is:

If x is a basic feasible primal solution amdare the corresponding shadow prices, then
x is optimal if and only if 7t is afeasiblesolution of the dual

If we have equalities>-inequalities, unrestricted or non-positive variablegrgthing works just the same.

Back to example

To check if the provided solutions are optimal, we need tred.du

min 5y; + 8y2 + y3

max 6x1 + Xxp X3 — X4

x1 + 2% + x3 + x4 <5 v1 + 3y = 6
_ 2y + 2 +y3 > 1
3x1 + X — x3 <8
= vi — Y2 +ys =2 —1 DUAL
Xp + x3 + x4 =1
1 +y3 > —1
X2,X3,X4 2 0 N 0
x71 unrestricted Yi.Y2 =2

y3 unrestricted
a)x;=2,x=1,x3=0,x4 =0 — assumex is optimal, then
— there areyq, y», y3 such thay = (y1,y2,y3) is feasible in the dual and complementaryto

check1st primal constraintxy +2x, +x3 + x4 =2 +2+0+ 0 = 4 < 5 not tight
— thereforey; must bed because is complementary ta

check2"d primal constraint3x; +x, —x3 = 6+1—0 =7 < 8 not tight
— thereforey, must be) because is complementary ta

Knowing this, check thast dual constrainty; + 3y, =0+0 =0 # 6
— this shows thaty, 2, y3) not feasiblein the dual, but we assume that it is.

This means that our assumptions were wrong andcgor,, X3, x4) is not optimal.
b) x1 =3, x0=0,x3=1,x4 =0 — again assume thatis optimal, then
— there areyq, y», y3 such thay = (y1,y2,y3) is feasible in the dual and complementarto
check1st primal constraintx; +2x, + x3+x4 =3+0+140=4 < 5nottight — y; =0
check2 primal constraint3x; +x, — x3 = 940 — 1 = 8 tight
check3™ primal constraintx; + x, 4+ x3 = 1 tight
check sign constraints;, x3, x4 > 0 — we conclude thafx, x5, x3, x4) is feasiblein the primal

Now we look at values ix with respect to the dual constraints:
x1 is unrestricted — 1%t dual constrainy; + 3y, = 6 is (always)tight
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x3 > 0we deduce — 3" dual constraint must bigght: y1—y2+yz3=—1
Together we have n = 0
1+ 3y2 = 6

Vi — Y2+ ys = -1
This has a unique solutian = 0, y» = 2, y3 = 1. By construction, this solution isomplementaryto x.
The last step is teheckif y is alsofeasiblein the dual. We already checkééf and3™ dual constraint.

check2d dual constraint2y; +y, +y3 = 0+2+1 = 3 > 1 — the constraint isatisfied
check4t™ dual constrainty; + y3 = 0+ 1 > —1 the constraint isatisfied
check sign restrictions;; = 0 > 0 andy, = 2 > 0 — sign restrictionsatisfied

— this shows thaty,, 2, y3) indeed deasiblesolution to the dual.

From this we can conclude thét;, x5, x3, x4) is indeedoptimal.

Summary

givenx, check ifx is feasible

then find which variableg; should be)

then find which dual constraints should be tight
this yields a system of equations

solve the system

verify that the solution is feasible in the dual

If all these steps succeed, then the gixés indeed optimal; otherwise, it is not.
Question what happens i is feasible but not a basic solution ?

Review

Max 3x; + 2x; x3 = 80 — x — x ;= 20 + x3 — x4

x1 + x < 80
xg = 100 — 2x1 — xp Xy = 60 — 2x3 + x4

2x1 + x2 < 100
X1 < 40 % = 40 - x x5 = 20 — x3 4+ x4
x1,x > 0 z= 04 3x1 + 2xp z = 180 — x3 — x4
Original problem Initial dictionary Optimal dictionary

Add a new activitytoy cars %h carving,1h finishing,1 unit towards demand limitj1 price — x¢ = #cars

Max 3x1 + 2x + X6

— _ — 1
Xp + x2 + 2xs < 80 X = 80 " Y2~ g%
2 X4 = 100 — le — X2 — Xp
2x1 + x2 + x¢ < 100 ?
X + xg < 40 ¥ = 40 = % — %
! xlxzx?; 0 z= 0+ 3x; + 2x2 + x4
Original problem Initial dictionary Optimal dictionary

in the optimal dictionary— makexg non-basiqno production of cars)» feasiblemodified dictionar*

X3+3% = 80 — x; — x = 80 — x — X v o= 20+ x3 - x
¥txe =100 — 20 — x  xp =100 - 20 — x» . xp = 60 -2 +
Xs+xs = 40 — x; x5 = 40 — x xg = 20 — x5 4 x)
z—xs = 0+ 3x + 21 Z =0+ 3x + 2% 2 =180 — x3 — x

substitutex} = x3 + %x6, Xy =x4+%, X5=X5+X5, 2z =2z—2X¢
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x = 20 + (x3+%x6) — (xq + x6) x1 = 20 + x3 — x4 — %x()
X = 60 — 2(x3+3x) + (xa+x) Xp = 60 — 2x3 + xy
x5 +x¢ = 20 — (x3+%x6) + (X4+X6) x5 = 20 — x3 + x4 — %x6
z—x¢ = 180 — (x3+%x6) — (xq4+ x6) z =180 — x3 — x4 — %x6

Add a new constrainpackaging 250 units of cardboard, 3/soldier, 4/train,

Max 3xq
X1

ZX1

X1

3X1

+ 2xy +  Xg
+ X + %Xé
+ X2 + X
+  Xg

+ 4xy +  xq
X1,%X2, X6

VAN IAIAIA

8

0

100

4

0

250

0

1/earx; = slack

X3 = 80 — x1 — xp — %x6
X4 = 100 — le — X2 — Xg
X5 = 40 — X1 — Xe
X7 = 250 — 3X1 - 4x2 — Xe
z= 04 3x1 + 2x + Xx¢

in the optimal dictionary— makex; basic — expresx; using the dictionary— new dictionary
X7 = 250 — 3x7 — 4xy — x6 = 250 — 3(20 + x3 — x4 — 3x6) — 4(60 — 2x3 + x4) — X6 = —50 + 5x3 — x4 + 1%

x1 = 20 + X3—X4—%x6
X = 60 — 2x3 + x4

x5 = 20 — x3+x4—%x6
z:180—x3—x4—%x6

—

x1= 20+ X3 — x4 — 3X
Xxp = 60 — 2x3 + x4

x5 = 20 — x3—|—x4—%x6
x7 = =50 + 5x3 — x4 + %x6
z = 180 — x3—x4—%x6

If the resulting dictionary is feasible, then it is also omil (we don’t change, all coeffs still non-positive)

However, the resulting dictionary may béeasibleif some basic variable is negative (here< 0)

— to recover optimal solution, we ugal Simplex Method.



Other Simplex Methods

8.1 Dual Simplex Method

— we use when the dictionaryiisfeasible but dually feasible
— same as Simplex on the Dumithout dealing with the Dual directly
— useful when adding new constraints to quickly recovematisolution

Recall: for every (basic) solution of the Primal, we hasteadow pricesthat we can assign to each item (constraint)
in such a way that the total value of items in shadow pricex&tly the value of the solution

P Max 3x; + 2xp ¥ = 40 _ x Solution:x; = 40, x, = 0, x3 = 40,

R x1 + x < 80 — 40 — T x4 = 20, x5 = 0 of valuez = 120

! 2¢; + x3 < 100 ¥a = Y2 X5 .

M " - 40 x4 = 20 — xp + 2x5  Shadow pricesity =0, 71, =0, 713 =3

A 1 = —

L x> 0 z2 =120 + 2x = 3%5 gy 4 1007, + 4073 = 120 = 3x; + 213
Note: the above shadow prices aninfeasiblesolution in Dual

p Min 80y I 1Ogy2 I 40y3 - 807; + 1007, + 4073 = 120 the same value as Primal

L Y1, Y2y > 0 1+ T = 0 %2

7'[1:020,7'(2:020,7'(3:320

Shadow prices corresponding to a non-optifeakiblesolution of the Primal aranfeasiblein the Dual
Shadow prices corresponding to @ptimal solution of the Primal areptimal in the Dual.
Shadow prices for aimfeasible solution of the Primaiay or may not befeasiblein the Dual.

‘ A solution of the Primal iglually feasibleif the corresponding shadow prices &easiblein the dual.

Dual Simplex Algorithm

We maintain that the current solution dually feasiblebut may itself benfeasible

x1 = 20 + X3 — X4 — 3% How do we know that the solution @ually feasible?
X2 = 60 — 2x3 + x4 ) ...if all coefficients of variables in arenon-positive

= 20 — - 5 . .
*5 3+ X %x6 (Why? Because the coeffs of slack variables are shadowsprice
X7 = =30 + 5x3 — x4 + 36 while the coeffs of non-slack variables are reduced costs)
z= 180 — x3 — x4 — 3% <« is dually feasible

52
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Dually Optimal
feasible Is feasible? YES— P .
. solution
solution
NO
L—Improve the solution—‘

\—cannot be improved—— LP is Infeasible

Sincex; < 0, the solution ignfeasible We want to make ifeasible In order to do that, we need tocreasethe
value ofxy. We makex; non-basic (value= 0).

We can do this by increasing one of then-basicvariables {3 or x4 or x¢), i.e., by making one of the non-basic
variablesbasic Clearly, x4 is not good for this since increasing makesx; only more negative {4 appears in the
equation forx; with negative coefficient).

So we must increase; or x4. But we also must make sure that this resultglirally feasible dictionary, i.e., the
resulting coefficients of non-basic variablexiare non-positive.

If x¢ enters the basis, them = —50 + 5x3 — x4 + %xé — %xé = 50 — 5x3 + x4 + x7 and so
z =180 —x3 — x4 — 3x6 = 180 — x5 — x4 — 3 x 2(50 — 5x3 + x4 + x7) = 130 +4x3 — 2x4 — x7

If x5 enters the basis, them = —50 + 5x3 — x4 + %XG — 5x3 =50+ x4 — %x(, + x7 and so
z=180—x3 — x4 — %X6 =180—-1 x %(50+x4— %x6—|—x7) — X4 — %x6 =170 — gx4— %x6— %x7

Whenxg enters the basis, the solutiomist dually feasible, while its whenx; enters the basis. How do we find out?
Both substitutions are a result aflding to z some multipleA of the equation for.

0

z:180—x3—x4—%x6—A(50—5x3+x4—%x6—|—x7)

— 1 1
= (180 —50A) + (=1 +58)x3 + (21— A)xa + (—3 + 38)x6 + (—Alx7

<0 <0 <0 <0

— <

14+5A <0 A< %

“1-4<0 1<A 1 is ti
L141A < o —1< N OSAS% forA:gf[heboundlsughtfovcg, _
0 2 T 2R = A<1 — x3 disappears from — enters the basis

~A<0 0=4

Ratio test

Simplified procedure: compare coefficients of non-basi@bdes inz and inx;, choose smallest ratio

. . 1
x3 : coeff —1x3 in z and5x3 in x7, ratlo5 =0.2 x1 = 20 + x3 — xq4 — %x6
. . ) = 60 — 2 ratio for x3:
x4 : coeff —1x, in z and—1x4 in x7, no constraint *2 X3 X4 . - 3
(negative coeffini;)| X5 = 20 X3 + X4 — 3% 1 _ oo
= —50 4 bxy — 1 5
% X7 X4 + 35X
. _l - l - . 2 _
xe : coeff —5xq in z and; xg in x7, ratlo% =1 2 — 180 _@ - %x()

(againwatch-out: we only consider this ratio because the coefficientpis positive)
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x1 = 30 — $xg — 3x6 + ix7 Shadow prices:
Smallest ratlc% for x3 — x3 enters X, = 40 + %x4 i %xé _ %x7 m =0, = g'
_ _ 1
. x3 = 10 + %X4 — 11—0x6 + %X7 7T3—017T4—§
x7 = —50 4 5x3 — x4 + 5x¢ i i
. 2l ) xs = 10 + fxy — 2x — lxy optimal solution to
— X3 = 10 + 5X4 — 15%6 + 5X7 the Dual.
z =170 — &xg — 2x6 — ix7 (Why?)

Solution is feasible (and dually feasible) optimal solution found.

Summary

Starting with adually feasible solution:

1. Find abasicvariablex; of negative value.

2. If no suchx; exists— stop, the solution is feasible> optimal solution found.

3. Ratio test in the dictionary, in the equation fag, find a non-basic variabte; such that
e x; appears wittpositive coefficienta in the equation fox;

e the ratloa is smallest possible (wherec is the coefficient of; in z)

If no suchx; exists— stop, no feasible solution exists report that LP idnfeasible.
Pivot x; into the basisy; leaves the basis.

(the resulting dictionary iguaranteedto be dually feasible)

6. Repeat.

ok

8.2 Upper-Bounded Simplex

Back to the toy factory problem. Subsequent market surwesaded the maximum demand for trains to3e
introduce new (complementary)

Max 3x; + 2x; Max 3x; + 2 .
1 X2 ’oad
x1 + x < 80 Yo+ 1 < 80 variablesx], x5:
le + x < 100 2x1 + xp, < 100 xi =40 — X1
X1 < 40 0< v < 40 xy, =50 — x;
2= 5 02?250 0<xj <40
X1, X2 > 0 =42 = ngégso

We solve the problem as usual, but for each variable we keef of either the variable or its complement but never
both. That is, the dictionary will either contain or x} but not both. Note that it is not necessary to keep both as one
can be derived from the other by a simple substitutibr= 40 — x;. In a way, we may think of having botty and

x1 in the dictionary but one of them idden.

We modify theratio test to account for these hidden variables. For illustratiohysesolve the above.

x3 = 80 — x1 — x x1 increases ta\ > 0 (enters) A <40
xg = 100 — 2x; — xp variables change as follows: 0< A < 40 =
z= 0+ 3x + 2x x = A 0<x <40 0< 80-A < A<8 =80
0< x4 <00 x4 =100 —2A 0< x4 < o0 =2
Most restrictive constrained imposed by the upper boung,or> we replacer; by xj = 40 — x;.
x3 = 80 — x1 — xp x3 = 80 — (40—x)) — x x3 = 40+ x] — x

x4 = 100 — 2x1 — xp — x4 =100 — 2(40—x]) — xo - x4 = 20+ 2x] — x
z= 04 3x1 + 2x z= 0+ 3(40—x]) + 2x, z = 120 — 3x] + 2x,




8.3. LOWER BOUNDS 55

Ratio test

three possible types of constraints

(1) lower boundon a basic variables§, x4) — usual ratio test, var with aegativecoeff of x; — pivot
(2) upper boundn the entering variablec() — replace the variable by its complementadjmariable
(3) upper boundn a basic variable (see below) var with apositive coeff of x; — replace by var

xp increased ta\, ratio test: XA < =40

_ r
x3 = 40+ ¥ — X (1)x3=40—A>0 b <2 — 00 Xy =20+2x; - xp
xg = 20 4+ 2x] — 1 x4 =20—A>0 'Azé) l

X9 @
z = 120 — 3x] + 2x, (2)x, = A <50 2:8 = . X2 =204 2% — x4
(3) no constraint x4 leaves, we pivot
Xy = (20 +2x] — x4) xp = 20 4+ 2x] — x4
X3 = 40 + Xi - (20+2X£—X4) — X3 = 20 — Xi + X4
z = 120 — 3x] + 2(20+2x] —x4) z =160 + x| — 2x4
xj increased, ratio test: ;. A < 20 -2
(1)x3=20—A>0 A <40 Most restrictive constraint imposed by
@) =A< 40 1= = <o — replace by, = 50 — x,
(B)x, =20+2A <50 XA THE=15
(50—x5) = 20 4+ 2x] — x4 xh = 30 — 2x] + x4
x3 = 20 — ¥ + x4 —  x3= 20— x| + x4
z =160 + x] — 2x4 z =160 + x] — 2x4
x] increased, ratio test: , ,
x, leaves x| enters , 1.0 .1
D) x,: 20 =15 ; ) X = (15— 3x3 + 5x4)
2 50 Xy =30 —2x7 + x4 X3 = 20 — (15— 1x,+1x) + x4
i =20 2x} =30 — x5 + x4 =
(2)x} : 40 r_ 10,1 z = 160 + (15— 3% +3x4) — 2y
) X1 =15 — 3%+ 514
(3) no constraint
1 1 40— o —
¥po= 15— 3x + 3% optimal solution found Y =40-x =25
x3 = 5+ xb + Ixy — basic variablest] = 15, x3 = 5 2= go —x =50
— non-basic variablest, = 0, x, = 0 X3 =
z =175 — x), — 3x 2 N x4 =0

Note: Be careful when expressing the values of variables from ittodary not to confuse the variables and their
complements. In the above) is non-basicand so its value igero. However, this does not mean thatis and in
fact, the value ofr, is 50 — x5 = 50. In particular, observe that bothy andx} cannever be non-basic at the same
time (one of them is always positive). The fact that we doe# a variable in the final dictionary does not mean its
value is zero.

8.3 Lower bounds

The above procedure allows us to also handle general lowardsoother thaf).

If a variablex; is constrained by bounds < x; < r; where(;, r; are numbers, then we introduce a new variaplend
substitutey; (xj + ¢;). In the resulting problem, the variabtg is non-negative with an upper bounrgd< r; — ¢;.

(If r; = oo, we don’t have an upper bound foy.) We then solve the problem using the new variable, and tlenlate
x; from the resulting value of; by takingx; = x; + ¢;.

Contractual obligations with a big retailer demand thaeast 30 toy soldiers be produced.
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Max 3x1 + 2xp Max 3(30 4 x5) + 2xp
X1+ x < 80 introducexs to replacex: (304+x5) + x < 80
2x1 + xp < 100 x1 = 30 + x5 2(30+X5) + x < 100
30 < xp <40 0<x5<10 0<% <10
0<xp, <50 0<x <50
Max 2 introduce complementary
ax 2xp + 3x5 + 90 variablesy), x7: Initial dictionary:
X + x5 < 50 ,
Xy + 2x5 < 40 x2:50_x2 x3 =50 — x» — x5 N
0< <10 xéle—x5 x4 = 40 — XQ—ZX5
02§5250 0<x} <50 z = 90 + 2%y + 3x5
== 0<xf <10
X5 enters, ratio test; aced b 10 ) X, enters, ratio test:
replace =10—
(1) x3: 51—0 =50 5 Tep 10 W5 N x/5 (1) x5 : TO =40
N .40 L X3 = - X2 X5 N .20 _ —
Yo:3 =20 ¥y = 20 — xp + 24 xy: 7 =20
(xs5:10 z = 120 + 2x; — 3x% (2) x2: 50
(3) no constraint (3) no constraint

x% enters, ratio test

x4 leavesyx, =20 — x4 + 2x5 xz replaced byt = 10 — x5

L, x= 20 = xg 4 2x% R (1) x: 2 =20 L, ox= 40 - x4 — 2%
x3 = 20 + x4 — xi (2) x5 : 10 x3 = 10+ x4 + x5
z = 160 — 2x4 + Xé (3) X : 50520 =15 z =170 — 2x4 — x5

optimal solution:
X2 :40,X3:10,X4:0,X5:0
calculatex; fromxs — x1 = 30 + x5 = 30

X1:3O

2 = 40 solution of valuez = 170

8.4 Dual Simplex with Upper Bounds

Instead of selling via a retailer, we decided to ship disetdl customers. This involves extra packaging step before
shipping requiring 3 sheets of cardboard per a toy soldiet dasheets per a toy train.

Being a green company, we wish to minimize the amount of pgiokematerial used. However, we also want to make
profit, namely at leas150. This leads to the following minimization problem.

Min 3x; + 4xp introducex?, x5 and Maxz = —3x; — 4%,
x1 + x < 80 [carving] slack/excesss, x4, x5
2x1 + xp < 100 ([finishing] xi =40 — xq X3 = 80 — x1 — xp
3x; + 2x, > 150 [profit] xh =50 — x; 8?63 i o xg = 100 — 2x; — x
0 < x <50 0<x,<50 07 z= 0-3n —4n
dictionary isdually feasible — all coefficients inz are non-positive-» can use Dual Simplex method
first, we checkupper boundsof basic variablesys = 80 < o0, x4 = 100 < 00, x5 = —150 < 00 — OK
next, we checllower bounds x3 = 80 > 0, x4 = 100 > 0, x5 = —150 #* 0 — not OK, must increases

. 3 4 - . " .
x5 leavesyatio test — xq : 3= 1, x5 5= 2 (compare coefficients inand (positive coeffs) ins)

take smallest x; entersys = —150+3x; +2x, —  x1 =50 — 33, + £x5
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X = (50 — 522 + 3%5) x = 50— 2x, + ixs
x3 = 80 — (50— 3x+3x5) — X X3 = 30 — tx, — lxs
xg = 100 — 2(50 — 25+ Lxs) — x, - X4 = ly, — 2xg
z = 0—3(50— £xp+ 3 X5)—4x2 z = =150 — 2x; — x5

checkupper bounds x; = 50 £ 40, x3 = 30 < o0, x4 = 0 < 0o — not OK, replacex; by x; = 40 — x}

(40—x)) = 50 — 2xp + ixs xXp= 10 + 3x — ixs
X3 = 30 — %xz - %x5 X3 = 30 — %xz — %x5
Xy = Loy — 2xs 0 xg = Ly, — 2xs
z = —150 — 2xp, — x5 z = —150 — 2xp — x5
upper boundsy] = —10 < 40, x3 =30 < 00, x4 =0 < c0o — OK
lower boundsx}] = —10 2 0, x3 = 30 > 0, x4 = 0 > 0 — not OK, must increase)
x] leaves, ratio test> x, = ﬁ = 3, x5 : no constrain{negative coefficient inr}) — x, enters
=-10+ %xz - %x5 Xy = (154 3 x1 + 5 x5) X =15+ 3x} + ixs
Ly =104 %) 4 Lus f,i 30 — %(15+ 3x5) — § X3 - 25 — %xé - %x5
4= 3(15+ 5) 5X Xg = 5+ 31 X5
— xp =15+ 3x} + 1xs5 z=-150 — 2(15+ 3x} + 3x5) — z = —180 — 3x] — 2x5

upper boundsy; = 15 < 50, x3 =25 < 00, x4 =5 < 0o = OK

} = optimal solution found
lower boundsx, =15 2 0,x3=25>0,x4=5>0— OK

values of variables: basie, = 15, x3 = 25, x4 = 5, non-basices = 0,x] =0 — x; =40—x} =40
— x1 = 40, x, = 15 is optimal with value = —180
—> Minimum amount of packaging required to makE50 of profit is 180 units.

8.5 Goal Programming

We consider again the (usual) toy factory production pnwbhgth two productstoy soldiersandtoy trains with sale
prices$3 respectively$2, requiring 1 hour each in the carving shop, and 2 hours réispgcl hour in the finishing
shop; the total hours being 80 and 100 respectively, as uBagh toy soldier requires 3 units of packaging material,
and each toy train requires 4.

The company became non-profit and set itself several nevg goal
Goal #1: not to produce more than 40 toy soldiers; only up to 40 carolskat the price$3
Goal #2 make at leas$140 of profit to pay workers wages
Goal #3 use at most30 units of packaging material; only this much is currentlyiklze

Each goal can be met individually, however trying to meethatte at once may not be (and it is not) possibhlure
to meet a goal carriesgenalty, proportional to the amount by which the goal is not met.

Penalty #1 each toy soldier over 40 units will not be sold; penaltydfof missing profit
Penalty #2 any profit below$140 has to be obtained by borrowing2(% interest
Penalty #3 any missing packaging material has to be bougB0a80 a unit

Our combinedyoalis to minimize thetotal penalty incured. This leads to the following:
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x1 + xp < 80 [Carving] X1 + x + x3 = 80
2x1 + xp < 100 [Finishing] 2x1 + x» + x4 = 100
X1 < 40 [Goal#1] 4 i + x5 — 40
3x1 + 2x, > 140 [Goal#2] 1% 3x; + 2x, — % — 140
3x1 + 4xp, < 130 [Goal #3] 3x1 + 4xp + xy = 130

Slack variablexs andx, are assumed to be always non-negative; the come ligmeh constraints — must be satisfied
unconditionally. On the other hand, we can allow, x¢, andxy to be unrestricted, since the corresponding constraints
aresoft — we may violate any of them, but we incur a penalty.

Depending on whether each ©f, x4, x7 is positive or negative, we incur different penalties. Hwstance, ifxs is
positive, there is no penalty, the penalty is Oxdfis negative, the penalty is3xs, since we lose $3 for each unsold
toy soldier (there is “minus” in penalty becausegis negative, not because we lose profit).

Similarly, if x¢ is positive, the penalty is 0, while ifs is negative, the penalty is1.2xg, since if profit drops below
$140, to pay the workers we have borrow at 20% interest. Natiete can specify different penalties for both positive
and negative slack (not necessarily only zero) and the rdetlooks the same way.

The question now ishow do we formulate this problem as a linear program?

We express each of the variables x¢, x7 as adifference of two non-negativevariables. Namely we writes asxs =
x4 — x5 wherexZ andx; are new non-negative variables. Similary we wiige= x/ — x, andx; = xJ — x; . As
we discussed at the beginning of the course, under some pisns) the values of these new variables (in an optimal

solution) will be precisely the positive/negative partstaf variabless, xg, x7.

This allow us toconstruct an objective function that captures the sum of all the pesathat we incur in different
situations (depending on the signs of the variablgsy, x7).

x5 = x3 — x5 min 3x5 + 1.2x, + 0.8x;,
N ~ X1+ X2+ Xx3 = 80
X6 = Xg — Xg 2x1+ xp + X4 =100
Xy =xf — x5 X1 +xd — x5 N ) = 40
o 3x1 + 2x2 —Xg + x4 =140
X5/ X5, % 1 X6 1 X7, %7 2 0 3x1 + 4x2 +xf —  x; =130

We solve this problem using standard methods (Simplex ndetihdual Simplex method). Alternatively, we can
solve the dual and from that construct a solution to this |emb

Exercise.Construct the dual LP to the above problem.



Transportation Problem

Historical note

The problem and its solution described first in 1941 by Hitatkc— predates the Simplex Method — independently
discovered by Koopmans during World War 1l used to minimizgging times for cargo ships — the method spear-
headed research on linear and non-linear programs in edosiorfihe Assignment problem (a special case of the
Transportation Problem) can be solved more efficientlygislie Hungarian Method, found in the work of Egervary

in 1931 and first explicitely described in 1955 by Kuhn who ednit the Hungarian Method; recently it was found

that the method was actually first found a century earlier dgoBi in the context of solving systems of ordinary

differential equations (work published posthumously i®@B8 Since then, more efficient (but more complicated)
algorithms have been found for the two problems.

In the transportation problem, we have

— m sourcegwarehouses, factories) producing items, and
— n destinationgshops, businesses) requiring these items.

The items need to bansported from sources to destinations which has
associated cost

‘ The goal is taminimize the totalcostof transportation.

— Thei-th source has; availableitems
— Thej-th destinatiordemandsb; items to be delivered.
— It costsc;; to deliver one item froni-th source tg-th destination.

Assumption: destinations do not care from which source the items come,
and sources do not care to which destinations they deliver.

nmnmOITVCOwWm

nzo——=4r»Z——=0nvmao

S
=

Decision variables:x;; = the number of items transported from tihth source tg-th destination

m n
Minimize ) Y cjjxj; ‘ Balanced Transportation Problem ‘
i=1j 1n
subject to 2 xij = a; fori=1,...,m [i-th sources hag; available items]
j=1
m
Y xij=1b forj=1,...,n [j-th demand$; items]
iz

xjj > 0 fori=1,...,mandj=1,...,n [non-negative amounts transported]

total supply total demand

r-ﬂ:\\ f;\-\
A solution exists if and only if Z a; = Z b; (the total supply is equal to the total demand)
i=1 i=1

59
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Why equalities? If the total supply is bigger than the total demandiy 0, then we introduce dummydestination
with demandA and withzero costof transportation from all sources. If the total demand gger than the total supply
by A > 0, thenno feasible solutionexists. However, we can still model tshortageby introducing adummysource
with supplyA and some the costs of transportation (say zero).

Example

A furniture company owns three warehouses in the New York &i¢a and needs to deliver chairs to its three shops in
the city for tomorrow. The three shops demand 4, 2, and 3 wsfsectively. Current stock level of chairs in the three
warehouses is 8, 6, and 3 respectively. Delivery costs frach &arehouse to each store are different due to different
distances. These are as follows (in $ per unit).

| Shop#

Demand: Supply:
Delivery ~ Warehouse #} 57§34 Shop #1: 4 units ~ Warehouse #1: 8 units
costs:  Warehouse#2 $4 $2 $2 Shop #2: 2 units ~ Warehouse #2: 6 units
Warehouse #3 $2 $1 $5 Shop #4: 3 units  Warehouse #3: 3 units

Find the least expensive way to deliver the chairs to the stores.

Total Demand: 9 units } Solution exists, since total supply is at least the total aletih The excess supply

Total Supply: 17 units of 8 units will be assigned to dummy destination at zero cost.

| Shops # Demand:
Wareh 7 $3 %4 $0 Sh Supply:
. arehouse # op #1: 4 units
Delivery 7 83 84 % Shop 4 2 En:ts Warehouse #1: 8 units
Warehouse #3 $2 $1 $5 $0 Dummy:. 8 units Warehouse #3: 3 units
Min 7x11 + 3x12 + 4x13 + Ox14 + 4x21 + 2x90 + 2x93 + Oxog + 2x31 + 1x3p + 5x33 + Ox34
st x;11+ xpp+ xi3+ x4 = 8
X1+ X2+ X3+ X4 = 6
X31 + X3p + X33+ X34 = 3
X1 + a3 + x3 = 4
X12 + X2 + X3 = 2
X13 + x23 + X33 = 3
X14 + X4 -+ X34 = 8

all variables non-negative

9.1 Transportation Simplex Method

Tableau form:

1 12 c13 C14 ug 7 3 4 0 U
X11 X12 X13 X14 ai 8

€21 2 €23 C24 Uy 4 2 2 0 o
X21 X22 X23 X24 ap 6

€31 €32 €33 C34 u3 2 1 5 0 U3
X31 X32 X33 X34 as 3

U1 13 U3 Uy y —? U1 Uy U3 Uy
by by bs by o 4 2 3 8

Shadow prices
— uq,up, us for the first three constraintspply constrainis
— v1, 07,03, 04 for the latter four constraintglémand constrainjs
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Initialization

We need to find a startingasic feasible solution One method is th#linimum-cost rule:

1. Ifthe tableau has only 1 row, then for every variable setx;; = b;, and addy;; to the basis; then stop.
2. Otherwise find a variable; of smallest cost;;.
3. Ifa; < bj, then sety;; = a;, addx;; to the basis, remove theth row, and decreadg to b; — ;.
4. If a; > bj, then sety;; = b;, addx;; to the basis, remove theth column, and decreasgto a; — b;.
5. Repeat.
7 3 4 0 u 7 3 4 0 1
0 0 0 g1 0 O O 8 8]
4 2 2 0 iy 4 2 2 0 up
6 0 6
— —
2 1 5 0 us 2 1 5 0 us
3 0 313
01 U2 U3 U4 U1 Up U3 U4
4 2 3 810 4 2 3 810
7 3 4 0 Ui 7 3 4 0 uy
0 0 0 8 8] 0 0 0 8 8]
4 2 2 0 Uy 4 2 2 0 Uy
U 0 6 3 0 3 0 6131
%
2 1 5 0 U3 2 1 5 0 U3
@ 0 31 1 2 0 0 3111
U1 (%) U3 (2 U1 U2 U3 U4
4 2] 3 810 4] 2] 3] 810

Basic Feasible Solutions

The problem withwn sources ana destinations has: x n variables andn + n constraint. The constraints anet
independent but eachn + n — 1 of them are. This implies thiindamental property:

— everybasiscontainsexactlym + n — 1 variables,

) ) . . 7 4 0

— eachconstraint containsat leastonebasicvariable. 3 3 "
We mark all cellsthat correspond to theasic variables 4 2 5 0 1
— the table will contaimz + 1 — 1 marked cells (3) (3) 6

— every unmarked cell has value zero 2 1 5 0 U3
— each row contains at least one marked cell @ @ @ 3

— each column contains at least one marked cell

— consequently:there always exists a row or 4 o 5 2 3 3 3 “llz=22

column withexactly onemarked cell.

Shadow prices

Economic interpretation: (—u;) = price of chair in the-th warehouse
v; = sale price of chair in thgth shop.

Optimality criterion: the current solution is optimal if foevery warehouse andevery shopj
the cost of transportation is more than (or equal to) thdifference in prices i.e., if¢;; > v; + u;

How to determine shadow prices?

If x;; is basic then we break even when transporting froth source tg-th destination, i.e., if;; = v; + u; (we have
no incentiveincreasingor decreasinghe transported amount, since that does not change our)profit
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This yieldsm + n — 1 equations ovem + n variablesuy, ..., iy, v1,...,0,. This is anunderdetermined system.
Since we are only interested in pridéferences we may simply assume that one of the shadow prices is zert. Wi
that, the system will have a solution which will give us the@dbw prices we are interested imstead of writing
down and solving the system, we find shadow pritiesctly .

Setu; = 0 for somei € {1,...,m}. Then repeat the following until all shadow prives have bdetermined.

— Findi such thats; has been determinee for every basic variable;;, setv; = ¢;; — u;.
— Findj such thab; has been determinee for every basic variable;;, setu; = c;; — v;.

We choose to start by assigning = 0.

7 3 4 0 i 7 3 4 0 1y
8 8
4 2 2 0 @ 4 2 2 0 0
3 ©) 6 L 1B 3 6
2 1 5 0 U3 2 1 5 0 -2
ORI © |3 ORI © |3
4 vy 2 [ @ (%) 2 (2
4 2 3 8 4 2 3 8
7 3 4 0 1y 7 3 4 0 -2
@ 8 2 1 0 @ 8
4 2 2 0 0 4 2 2 0 0

@2 ® 06@%@23@206
© @ © |3 ©» @& |° |© |8

4 2 3 8 4 2 3 8

We price out non-basic variables by taking + v; (the value in blue) for every non-basig. This value represents
the price difference between-th warehouse angth shop. If this value isnore than the corresponding trasportation
costc;;, then it pays to make;; basic i.e., transport items fronth warehouse tg-th shop, since the net profit is
positive. Such variable is,, sincec,, = 2 andu, + v, = 3.

Pivoting to a new basis

We increaser, to A > 0 and need to find out which variable leaves the basis. Thisne 89 finding doop (a cycle,
circuit) in the tableau: starting fromy,, choosing basic variables in turn, either from the same oowame column
where we alternate between rows and columns, and comingtbagk.

= 3 4 0 ) We increasexy, to A. Since to total value in column 2 must be
@ 8 exactly2, we decreases;, from2 to2 — A. This decreases the
total value in row 3 byA, so we compensate by increasing
-A 4 2 2 0 4| from1to1+ A. Then the total in column 1 increases, so we
@7>@ @ 6 decrease,; from3to3 — A. Finally, all row and column totals
& 2 % 1 5 0 —2 | arebackin order.
1 A 1p-b @ 3 Largest valueA for which all current basic variables are non-
0 3 6 2 negative isA = 2; for this value x3, decreases to 0, leaves the
4 2 3 8 basis, andr, enters the basis.

How to find the loop? Make the entering variable basic (circle it in the tabledljen cross out every basic variable
that belongs a row or column which has no other basic vari@slaas other basic variables, but they all have been
crossed out). Repeat as long as possible. What remainsdedired loop.
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7 3 4 0 -2 7 3 4 0 -2
® |8 ® |8
4 2 2 0 —4 4 2 2 0 —4
® |® |& 6 L1 @ @ 6
2 1 5 0 -2 2 1 5 0 -2
OERIE) © |3 ORI @ |3
0 3 6 2 0 3 6 2
4 2 3 8 4 2 3 8
After pivoting, we obtain the following tableau. We calciédhe shadow prices, and price out cells
7 3 4 0 1y 7 3 4 0 -2
8 2 0 0 8
4 2 2 0 Uy 4 2 2 0 0
L @ |6 6 L@ 1@ |6 S
2 1 5 0 U3 2 1 5 0 -2
©) © |3 ©) ’ " 1@ s
v [ U3 v, . 4 2 2 2 .
s |2 3 g | z=20 4 2 3 8 z=20
— xp4 enters the basis, increasediplargestA = 0 whenxs4 leaves the basis.
7 3 4 0 -2 7 3 4 0 0
@ 8 4 2 2 8
4 2 2 0 0 4 2 2 0 0
o2& @ |® | Lo @ |G @ |°
2 1 5 0 -2 2 1 5 0 )
@+A —A || 3 @ 0 0 -2 3
4 2 2 2 4 2 2 0
4 2 3 8 z=20 4 2 3 8 z=20

Optimal solution found.
x21 =1, %0 = 2, xp3 = 3, x31 = 3.

Conclusion: Least costly way to deliver the chairs to stores is to deliechairs from warehouse #1, deliver 1, 2,
and 3 chairs from warehouse #2 to shops #1, #2, and #3 resglgcsind in addition deliver 3 chairs from warehouse
#3 to shop #1. The total transportation cos$2§.

Assignment Problem

We haverm machines that we want to assignedobs. Machines are different and to execute jobn machine
requiresc;; resources (time, space, energy). We want to minimize totalet of resources used.

We can model it as a Transportation Problem witlsources—machines, destinations—jobs, costs;, each demand
a; equal to 1, and each available suppjyalso equal 1. By adding dummy machines and jobs, we may asthathe
n = m. We may solve the problem using the standard (Simplex) ndetbothe Transportation problem. This is
unfortunately not very efficient, sinevery basisof the corresponding LP contains— 1 degeneratebasic variables.
That is why specialized algorithms, such as the Hungariathbtk exist for the Assignment Problem.

Transshipment Problem

A generalization of the Transportation Problem where we sfag some items via several intermedidtarisship-
ment) locations. We can model it as an ordinary Transportatiablem bytreating each intermediate node beth

a source and a destination (it appears twice in the tablémudlemand is equal to its supply (equal to its storage
capacity), and has zero transportation cost between.itself
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64
Transportation costs matrix:
Trans_shipment 11 00 00 00 Warzgouse
Warehouse #1 point #1 Shop #1
0 ‘11 €33 Warehouse
M@ 21 €22 €23 o #2 ’
€21 €23 3 Transshi
0 00 €33 C34 s
C 00 0 0o Caa Tra;gship

€22
Warehouse #2 Transshipment Shop #2
point #2 Transshi i
p Transship
#1 42 Shop #1 Shop #2
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Network problems

Historical note
The Shortest Path Problem is one of the most important efficemputational tools at our disposal. Itis used every-
where, from GPS navigation and network communication tgegtananagement, layout design, robotics, computer
graphics, and the list goes on. Often many problems reduediog shortest paths or use shortest paths as guidelines
to optimal solutions. First algorithms for the ShortesttAaioblem were designed by Ford (1956), Bellman (1958),
and Moore (1959). For non-negative weights, a more efficgarithm was first suggested by Dijkstra (1959). Since
then, many improved and specialized algorithms have beexiajeed, with close to linear running time. For instance,
in the context of navigation, current record holder is theoHabelling algorithm (2011), which uses precomputed
distances from carefully chosen nodes—hubs to speed ugipditg on maps from hours to tenths of microseconds.
For All-pairs Shortest Path problem the first algorithmsevieunds by Shimbel (1953), and by Roy (1959), Floyd
(1962), and Warshall (1962). A more efficient approach isralioation of Dijkstra’s and Bellman-Ford’s algorithms
known as Johnson’s algorithm (1977).
The Minimum Spanning Tree problem also has a rich historg fliist known algorithm was developed by Borlivka
(1926) for efficient distribution of electicity. Later indendently discovered by many researchers over the years:
Jarnik (1930), Kruskal (1956), Prim (1957), and Dijkstt8%9). All are based on similar ideas and have very efficient,
almost linear-time implementations. There also existiefficparallel and distributed implementations. The later
notably used in minimum spanning tree protocols found feadjy in routing broadcast/multicast communication in
computer and wireless networking.

G = graph or network consists of

— asetV of vertices(nodes, points) and
— asetE of edgedarcs, lines) which are connections between vertices.

write G = (V, E); write V(G) for vertices ofG, andE(G) for edges ofG.
(vertices are usually denotedor v with subscripts; edges we usually denejte
edges may hawdirection: an edge betweernu andv may go fromu to v, we writee = (u, v),

verticesV = {1,2,3,4,5,6}

(

(4,6), (5,3), (5, 6)}

weightsc(1,2) =2 ¢(1,3) =5
c(2,5)=1 c(4,2)=3 c(4,6) =2

R ¢(53)=1 ¢(56) =2 —

Figure 10.1: network (left), undirected network (rightiges(1,2), (2,5), (3,5), (5,6) form a tree of weighb
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or fromwv to u, we writee = (v, u)
(if an edgee does not have a direction, we treat it the same way as havitngdir@ctions)
if all edges do not have a direction (are undirected), we Isa/the network isindirected
edges may haweeight: a weight of edge = (u, v) is a real number denotede) or c(u, v), c., cuo
a sequence of nodes and edges1, v, €3, . . . Uk_1, €k, Uk IS

— apath (directed path) if each; goes fronw; to v; 11
— achain (undirected path) if eacty connects); andv; 1 (in some direction)

(often we write:eq, ey, . . ., e, IS a path (we omit vertices) or writey, v, . . ., v, is a path (we omit edges))
a network isconnectedif for every two nodes there is a path connecting them; otieerit isdisconnected
acycle(loop, circuit) is a path starting and ending in the same nodeer repeating any node or edge
aforest (acyclic graph) is an undirected graph that contains ncesycl

atreeis a connected forest

Claim: A tree withn nodes contains exactly— 1 edges. Adding any edge to a tree creates a cycle.
Removing any edge from a tree creates a disconnected forest.

10.1 Shortest Path Problem

Given a networlG = (V, E) with two distinguished vertices t € V, find a shortest path fromto ¢

Example: In Figure 1 (left), a shortest path frosn=1to ¢t = 6is1, 2,5, 6 of total length5, while fort = 3 a shortest
path is1,2,5,3 of length4. We say thatlistancefrom nodel to node6 is 5. Note that there is no path fromto
t = 4; we indicate this by defining the distancedtasco.

LP formulation: decision variables;; for each(i, j) € E

Min 2 WijXij
(ij)€E
1 ifi=s
Yo oxi— ), xi=4q -1 ifi=t foreachi € V
ji(i,j)€E j:(ji)eE 0 otherwise
xij € {0,1} foreach(i,j) € E
Modeling

A new car cost$12,000. Annual maintenance costs are as follows: = $2,000 first year,m, = $4,000 second
year,mz = $5,000 third year,my = $9,000 fourth year, andns = $12,000 fifth year and on. The car can be sold
for sy = $7,000 in the first year, fors, = $6,000 in the second year, fa; = $2,000 in the third year, and for
s4 = $1,000 in the fourth year of ownership.

An existing car can be sold at any time and another new cahpsed a12,000. What buying/selling strategy for
the next 5 years minimizes the total cost of ownership?

Nodes ={0,1,2,3,4,5}

Edge(i, j) represents the act of buying a car in yéand selling in
yearj. The weight is the price difference plus the maintanencg cos
i.e., the weight is 0

C(i,j) = $12,000 — S(i—j) +my+my+... .+ mi—j)
Answer: the length of a shortest path from nd@dle node5.




10.1. SHORTEST PATH PROBLEM 67

A company wants to introduce a new model of its ever-popcddirphoneto the market. To gauge the demand, a
limited batch of product is to be brought to the market. Thedpict is assembled from two parts, a circuit board, and

housing. In addition, workers need to be trained and raw mni@hfgocured.

After the initial assesment, the project manager put tagredhist of all tasks along with estimated duration of each
task. The tasks are interdependent, some need to finishebatfoers can start. First, (A) workers need to be trained
and (B) raw materials purchased which takes 6 and 9 daysectraplly. After these tasks are finished, both parts
of the product, (C) the circuit board and (D) the housing,raemufactured taking 7 and 8 days, respectively. Each
circuit board, once manufactured, needs to undergo addittesting (E) to comply with FCC regulation which takes

10 days. Afterwards, the cell phone is assembled, packagedshipped (F) which takes 12 days.

What is the minimum number of days before the product canhréae market? What is theritical path of the
production, i.e., the sequence of tasks delaying any of mti&tays the whole production ?

We identify main check-points: =6

(1) start, (2) completion of tasks A and B, 1 A 2 ’CS 4 ’;2 5
(3) completion of task D, (4) completion of tasks C,E, s f
E

and (5) finish. _9
Nodes{1,2,3,4,5} 7D ~10
Edges correspond to tasks that connect checkpoints, veeaght v
durations with negative sign. g 3
Answer: A shortest path from to 5 is a critical path. (38 days = least time to hit the market)

Dijkstra’s algorithm

Algorithm finds the length of a shortest path frarto every vertex ofz (not onlyt)
Weights of edges are assumed tanoe-negative else the algorithm may output incorrect answer.

variables. d, for eachu € V, anestimateon the distance fromto u

initialize: d, = 0 ifu=s all vertices are initiallyunprocessed
"] o otherwise wnp
. : Step#| s a b ¢ d t
1. Find anunprocessedertexu with smallestd,, 1 0 o o0 o0 o0 o
2. ForeacHu,v) € E, updatel, = min{dy,, d, + cys} T 2 5
3. Marku as processed; repeat until all vertices are processed. .
4. Reporid; as distance fromato t 2 0" 2 5 o °3° o
Example: 2% o 3
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Final 2 3 o0

result

Can be augmented to actually find a shortest path.

2" Foreachu,v) € E, if dy > dy + wuy, thend, = d,, + w,, and setp, = u.

For the above example, we have:
p1 = undefined, py =1, p3 =5, py = undefined, ps = 2, pg = 5.

We can depict this by marking the edge frgsto u for eachu € V.
(the picture on right). Note that the edges we marked formee tr

A shortest path froni to 6 is found backwards by taking pe, py, - - - -
The path this yields i3, 2, 5, 6, since5 = pg, 2 = ps, andl = p».

10.2 Minimum Spanning Tree

A power company delivers electricity from its power planteighbouring cities. The cities are interconnected by
power lines operated by various operators. The power coynpants to rent power lines in the grid of least total cost
that will allow it to send electricity from its power plant &l cities.

Given an undirected netwoi® = (V, E) find a collectionF C E of minimum weight so thatV, F) is a tree.
(we say thatV, F) is aspanningtree because it spans all vertices)

Example: The tree in Figure 1 (right) is not spanning because it doésarttain the vertex 4. Adding the ed(® 4)
yields a spanning tree of weigBf while adding the edgét, 6) yields a spanning tree of weigft Note that adding
the edge(1, 3) is not possible, for it creates a cydg2, 5, 3 which is not allowed in a tree.

Kruskal's (Prim’s) algorithm

initialize: F to be empty; all edges are initiallynprocessed
Kruskal's algorithm:

1. Find an unprocessed edgef smallest weighto,.

2. 1f (V,FU{e}) is a forest, then adelto F.

3. Marke as processed and repeat until all edges have been processed.
4. Report(V, F) as a minimum-weight spanning tree.

Prim’s algorithm: replace 1 byl’

1’ Find an unprocessed edgef smallest weight that shares an endpoint with some edfe in
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10.3 Maximum Flow problem

A delivery company runs a delivery network between major itlex Selected cities are connected by routes as
shown below. On each route a number of delivery trucks isaditdyed daily (indicated by labels on the corresponding
edges). A customer is interested in hiring the company tivetehis products daily from Denver to Miami, and needs
to know how much product can be delivered on a daily basis.

maximize z
_ 0< xpc<2
—XpC—XDH =z 0< xpyg <1
Xpc —XCH—XCN 0
0< xcp <1
XpH+XcH —xpgm = 0
0< xen <2
XCN—XNM =0
_ 0<xym<1
XNM+XHM = Z 0< xpy <3
conservation of flow
In general, network; = (V, E):
s = source(Denver) u;; =capacityof an edgej (# trucks dispatched daily betweeand))
t = sink (Miami) x;; =flowon an edgé; (# trucks delivering the customer’s products)

max z .
—Z 1=3S5
Zxﬁ — inj = { 4 i=t

jev jev 0 otherwise
jieE ijeE
N—— N——

flow into i flow out ofi
0 < Xjj < Ujj for all l] e€eE

Ford-Fulkerson algorithm

Initial feasible flowx;; = 0 for all ij € E.

A sequence of nodes;, vy, . .., vy, is achainif v;v;,1 € E (forward edge) orv; 1v; € E (backwardedge) for all
i=1,...,n—1.If vy =sandv, = t, then we call it ar(s, t)-chain. Consider afs, t)-chainP.

Theresidual capacityof a forward edgej on P is defined asi;; — x;; (the remaining capacity on the edgg The
residual capacityf a backward edgg on P is defined as;; (the used capacity of the edg.
Theresidual capacityf P is theminimum taken over residual capacities of edgeson

If the residual capacityof P is positivee > 0, thenP is anaugumenting chain If this happens, we can increase the
flow by increasing the flow on all forward edges&yand decreasing the flow on all backward edges. 3his yields

a feasible flow of larger value + ¢. (Notice the similarity with the Transportation Problendahe ratio test in the
Simplex Method — same thing in disguise.)

Optimality criterion: The flowx;; is optimal if and only if there is no augmenting chain.
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Residual network

Finding an augmenting chain efficiently residual networlG, constructed as follows:

— start by making/ the nodes of5, (no edges yet)
— thenfor every edgg € E,
(a) add edgéj to Gy if x;; < u;;
(b) add edggi to Gy if x;; >0
(if both happen then the residual network contains both tlged andji)

‘ Any path from s to ¢ in the residual network is an augmenting ch%iin.

Starting feasible flowr;; = 0 (indicated in boxes) —  residual network (residual capacity shown on edges)
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no path from Denver to Miami in the residual netwerkno augmenting chain> optimal solution found

— maximum flow has value 3

Minimum Cut

For a subset of verticed C V, the edges going between the nodesgliand the rest of the graph is calledat. We
write (A, A) to denote this cut. The edges going outdfare calledforward edges the edges coming intd are
backward edges If A containss but nott, then itis an(s, ¢)-cut.

Thecapacity of a cut(A, A) is the sum of the capacities of its forward edges.
For example, led = {Denver,Chicag}. Then(A, A) is an(s, t)-cut of capacity 4. Similarly, lel, = {Denver,

Chicago, New York. Then(A,, A.) is an(s, t)-cut of capacity 3.

Theorem 5. The maximum value of &, ¢)-flow is equal to the minimum capacity of &5 ¢)-cut.

This is known as the Max-Flow-Min-Cut theorem — a conseqaeristrong duality of linear programming.

maximize z 0< xpc<2
—XDC—XDH =—z 0<xpyg <1
XDC —XCH—XCN 0 0< xcp <1
XpH+XCH —xgm = 0 0< xcn =2
XCN—XNM =0 0<xym<1
XNM+XHM = Z 0SXHM <3

Dual:

minimize 2vpc + vpy + vcl + 29en + ONM + 30HM
Optimal solution ( of valug)

Yp —Yc < Upc
Yp — YH < upH yp=yc=yn=1 — A={D,CN}
Yyc — YH < ucH Yo =ym =0 min-cut
Yc — YN < OcN Upy = UcH = OnM =1
YN TYmM S ONm vpc = vcN = oM =0
YH  —YmM < UHM
5] —ym= 1 . . .
— given an optimal solution, le& be the nodes whose
UDC, UDH, UCH, VCN, UNM, VM 2> 0 value is the same as that of source
YD, Yc YH YN, Ym unrestricted — (A,A) minimum cut

maximum flow minimum cut
max z ‘ min Z ul-]-vl-]-
—z i=s ijeE
Z x]-l- — 2 xij = z i=1t Yi — y] < Uz’j for all 1] € E
jev jev 0 otherwise _
jicE ijeE Yys — yr = 1
vij > 0 forallij € E

0 < x5 < forallij € E ,
= 4= J y; unrestricted  foralf € V
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10.4 Minimum-cost Flow problem

A delivery company runs a delivery network between major itlex Selected cities are connected by routes as
shown below. On each route a number of delivery trucks isadidyed daily (indicated by labels on the corresponding
edges). Delivering along each route incurs a certain codidated by the $ figure (in thousands) on each edge). A
customer hired the company to deliver two trucks worth ofipieis from Denver to Miami. What is the least cost of
delivering the products?

(0) (0) minimize
5xDC+3xDH+4xCH+3xCN+4xNM+5xHM 0< xpc <2

Xpc+XpH = 2 0<xpyg <1
—XpC +XcH+XcN =0 0< xcg <1
—XDH—XCH +xgm = 0 0< xen <2
—XcNt+XNM =0 0<xym <1
—XNM—XHM =—2 0<xpm<3
(0) 3 (—2) conservation of flow

Minimum-cost Network Flow problem

NetworkG = (V, E):
u;; =capacityof an edge(i, j) € E (# trucks dispatched daily betweéand))
x;j =flowon an edgéi, j) € E (# trucks delivering the customer’s products)
¢;j =coston an edgéi, j) € E (cost of transportation per each truck)
b; =net supphyof a vertexi € V (amount of products produced/consumed at npde

min Z CijXij
(i,j)€E

Lo - L =
jev jev —~
ijeE jicE net supply
flowoutofi  flowintoi

0 < Xij < Uij for all Z]EE

Necessary Conditionz b; = 0.

1

If there are no capacity constraints, the problem is cahedtansshipment problem.

10.5 Network Simplex Algorithm

Primal Dual
min 2 Cijij
(ij)eE max Y_ byy;
iev
Xij — Xji = b; foralli e V
J;/ ! ];/ T~ yi — yj < ¢ forall(i,j) € E
(i,j)€E (ji)eE net supply

y; unrestricted forali € V
xij > 0 forall (i,j) € E

The Network Simplex method is a specialized form of the Samphethod for solving the Minimum-cost network
flow problem. That is, starting from a basic feasible solutiwe seek to improve the solution by increasing values
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of non-basic variables. If this is not possible, we arrivamtoptimal solution. If it is possible for some variable,
we increase its value as much as possible until some othiabl@is reduced to 0 at which point we swap the two
variables in our basis and repeat. To this end, we need tastisbe following issues:

what is basis like for the Transshipment problem?

how do we calculate shadow prices and reduced costs foea basis?
how do we determine optimality?

how do we pivot — how do we find which variable leaves thedfasi
how do we find starting feasible basis?

arwdE

Basis

Note that in the Transshipment problem thereraegjuations, one for each vertex, but they are not indepeficherch
like in the Transportation problem and the Maximum flow pesb). However, any: — 1 of them are independent
(assuming the network is connected). So we can summarizadgtbllows.

Fact 1. Every basis consist of — 1 basic variables.
Since variables correspond to the edges of the networkirthisn implies that
Fact 2. Every basis yields apanning treeof the networkG.

Namely, every basis has the foorg = {x;; | (i,j) € F} whereF C E is set of edges of; forming a spanning tree
(V, F) of G. (We ignore here the directions of edgegifj To see this, recall thdt contains exactly: — 1 elements
(since every basis has— 1 variables), and it cannot contain a cycle (ignoring thedioms of edges), since the
columns of the basis matri corresponding to the edges of such a cycle would not be imikre: (we can combine
them to produce the zero vector), which is impossible, sthieinvertible.

For example, consider the delivery company example withtmtapacities. Recall that we seek to deliver 2 units of
flow (truck-loads) from Denver to Miami. An example of such @fl(feasibleflow) is shown below. It constitutes

a basic (feasible) solution because at mast- 1 edges carry non-zero flow (justify this fact for yourselfrr this,
remember that not every feasible flow is basic). The cormedipg spanning treeb@sis is produced by simply taking

all edges with non-zero flow. If there are less thar 1 edges with non-zero flow (the solution is degenerate),
additional edges with 0 flow might be needed to be added to obasis — spanning tree. The choice can be arbitrary
as long as there are no cycles.

Edge|| Cost| Flow

DC $5 2
DH $3 0
CH $4 0
CN $3 2
NM $4 2
HM $5 0

Total cost:$24

Shadow prices

Note that shadow prices, one for each equation, corresmonddes ofG. Namely, we have a shadow priggfor
eachi € V where this shadow price corresponds to the equation foreceaton of flow at the node To find shadow
prices, we use complementarity — the dual constraints sporeding to basic variables must be tight. By inspecting
the dual, we see that the dual contraintsigre y; < c;; for each(i, j) € E. Thus for edgegi, j) forming our basis,
we must satisfy this with equality; — y; = ¢;;. This yieldsn — 1 equations im variables, arunderdetermined
system To determine this system we arbitrarily ggt= 0. Then we can find all the other shadow prices as follows:

o for every basidi, j) € E:
— if y; has been determined but npt then sey; = y; + c;;;
— if y; has been determined but ngt then sey; = y; — c;;.
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e repeat until all shadow prices are determined.
(This should remind you of a similar process that we usedénifansportation Simplex algorithm.)

Setyp = $0. Then since the edgeC is basic, we must hawa- = yp — cpc = yp — $5. Sinceyp = $0, we have
yc = —$5. Likewise for all other basic edges, we haye = yc — $3 andyy = yn — $4 andypy = yy — $5.
Thereforeyy = —$8, ym = —$12, andyy = —$7.

Reduced costs

Once shadow prices are found, we can determine reducedx@diteaon-basic variables. We “price out” all non-basic
edges. From the dual constraints, we see (since we are minghthat

thereduced costof edge(i, j) € Eisy; —y; — ¢jj

We calculate reduced costs of evergn-basic edgausing the shadow prices we calculated above. For instanee, t
reduced cost of the eddeH is yp — yg — cpg = $0 — (—$7) — $3 = $4. Similarly, the reduced cost of the edge
CHisyc —yy —ccy = —$5 — (—%7) — $4 = —$2. Note that, by definition, the reduced cost of eveagicedge

is $0 (check this for yourself).

Optimality criterion

The solution is optimal if and only if each non-basic edgg) hasnon-positivereduced cost, i.e.,
yi—yj—cij<0

If not, then there is an eddg, j) € E such that;; = 0 andy; — y; > c;;. The solution can be improved by entering
x;; into the basis and increasing it appropriately. To do thisneed to determine the leaving variable. We do this in
the following section.
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In our scenario above, the edge DH has positive reducedsdoshile the edge CH has negative reduced ce$2.
Thus the solution is not optimal and we can get a better sty increasing the flow on the edge DH (has positive
reduced cost).

Finding a leaving variable

We changex;; by valueA > 0. This violates conservation of flow constraints and we neefixtit. We must
increase/decrease some other edges to balance the déozease inv;; which in turn forces some other edges to
increase/decrease as well and so on. To make this work, vezvaithat addingi, j) to our set of basic edges (which
form a spanning tree) yields a subgraph wattactly oneloop (cycle); this follows from the defining properties of
trees (being minimally acyclic — adding any one edge creamgle). In particular, the cycle contains the edgé¢).
We go around this cycle and increase/decrease the flow ordgesef the cycle bA. Namely, if the edge is in the
same direction a§, j), we change the flow on this edge Wy if it is in the opposite direction, then we change it by
—A. Observe that for any value af this modified flow satisfies the conservation of flow equatidniemains to find
the smallest value of for which the modified flow remains feasible (non-negatiigmely, we have:

(1) each edgéi’, ;') in the direction opposite t(i, j) on the cyclex;; decreases to;y — A > 0
(2) each edgéi’, ;') in the same direction &g, j) on the cyclex; increases tayy + A > 0
The most strict constraint of all the above determines theihg variable. Namely, the variable giving the smallest

upper bound om is leaving. Then we modify the flow on the edges of the cycledudireg A to the flow on edges in
the same direction &, j) and subtracting to the rest.

We decided to increase the flow f0oon the edge DH. Adding DH into the basis creates a loop D-H-H®. We
increase/decrease flow along this loop. Namely, the flow erettge HM is increased by, since this edge has the
same direction (along the loop) as DH. The flow on DC, CN, NMdsréased by, since the direction of these edges
(with respect to the loop) is opposite to that of DH.

S>>

PCTS
S 5
]
The largest value foA (guaranteeing that the flow remains non-negative on evagg)eid A = 2. With that, the
flow on edges DH, HM is increased to 2, while the flow on DC, CN, Meduced to 0. One of these three edges

is a candidate for leaving the basis. We can choose any on€p€CD, NM (since the flow on all these three edges
reduces to zero simultaneously). We choose NM. Thus we getvébasis shown above (on the right).

Economic interpretation

The value(—y;) can be interpreted as the price of the commaodity (we arefiating) in node. For instance, in the
above we havgp = $0, yc = —$5 andyy = —$7. Thus the commodity cosf) in Denver,$5 in Chicago, ané7
in Houston.

It pays to transport the commodity (along an unused noreleaigje) if thecost of transportationis less than the
difference in price. Namely ify; — y; is more tharc;;.

For instance, the price difference between Denver and ldaus$7 dollars and it cost$3 to pay transportation. Thus
transportation is cheaper than the price difference andemprently it pays to send along the edge DH. Comparing
Chicago and Houston, we see that the price differen§2 mnd transportation cos$g. Therefore it does not pay to
send along the edge CH.
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Unbounded LP

Note that it is possible that the above test finds no bound.oim this caseA can be made arbitrarily large which in
turn makes the objective arbitrarily negative. In otheragthe problem is unbounded. This happens precisely when
x;; = 0 and each edge on the loop is in the directiortipf).

Fact 3. The problem iszinboundedif and only if there exists aegative costycle.

10.6 Network Simplex Algorithm with capacitites

To solve the more general problem with capacities, we neesligbtly modify our algorithm. In particular, the
algorithm will be a variant of the Upper-Bounded Simplex huost.

In addition to basic edges, we will need to keep trackaifirated edgegledges that carry flow equal to their capacity).
They will not necessarily be part of the spanning tree. We wdicate them usinglashedlines. In addition to
increasing flow on a non-basic edge (with zero flow), we wgbatonsidedecreasingflow on a saturated edge. This
will require modifying our optimality criterion and pivatig steps.

Edge|| Cost| Flow | Cap.

DC $5 2 2
DH $3 0 1
CH $4 1 1
CN $3 1 2
NM $4 1 1
HM $5 1 3

Total cost:$26

Optimality criterion

The solution is optimal if and only if

e each non-basic edge wittero flow hasnon-positivereduced costs
e eachsaturated edgehasnon-negativereduced costs.

If not, then there is either an edge j) € E such thaty;; = 0 andy; — y; > c;;, or there is an edg, j) € E such
thatx;; = u;; andy; — y; < ¢;;. The solution can be improved by enteringinto the basis and increasing/decreasing
it appropriately. To do this, we need to determine the legvariable.

Finding a leaving variable

We changex;; by valueA. Now A can be both positive an negative. We determine the valdelnf considering the
following inequalities.

(1) edge(i’,j') in the direction opposite t@, j) on the cycle0 < xyy — A <y
(2) edge(z,]) 0<L Xij + A< Ujj
(3) edge(i’,j') in the same direction &g, j) on the cycle0 < xy; + A < uyj

The most strict constraint of all the above determines theitg variable. Namely, if the chosen edggj) carried

no flow, i.e.x;; = 0, then the variable giving the smallest upper bound\ds leaving (unless it is;; who gives this
bound). If the chosen eddé j) was saturated, i.ex;; = uj;, then the variable giving the largest lower bound leaves
(unless it isx;; who gives this bound). Then we modify the flow on the edges®ttftle by adding\ to the flow on
edges in the same direction @sj) and subtracting\ to the rest. (Note that can be negative.) If an edge becomes
saturated by this, we indicate it by a dashed line in the dimgt This is to help keep track of the current objective
value.
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Finding a starting feasible basis

Unlike in the Transportation problem, here we cannot useeady heuristic to find a starting feasible solution, since
we have to, in addition, satisfy the capacity constraintish@ut the capacity constraints, the minimum-cost method
will still work — picking edges in turn and exhausting supplyone end or saturating demand on the other).

For small problems, we can get away with trial and error. H@wvein general this may not be very efficient. In fact,
there may not exist any feasible solution to the problem. Bé&dra more robust method. This is provided to us in the
form of the two-phase method (just like with the regular Sempmlgorithm).

In Phase |, we solve an auxiliary problem whose solution giile us a starting feasible solution to our problem; then
we go on from there in Phase Il optimizing this solution asccdesd earlier.

The problem in Phase | is obtained as follows. We add asiaek nodes. For every other nodec V, we
e add the edgés, i) of capacity—b; if b; < 0, or
e add the edgéi, s) of capacityb; if b; > 0.
The edges we added in this process we adificial while the original edges are calle€ial edges.
Now we assign new costs: each real edge will §@stwhile each artificial edge will cogtl. We call this the Phase

| problem. Notice that this problem has a feasible basis,ahatime basis formed by taking all artificial edges and
saturating them; assigning them flow equal to their capacity

Fact 4. The original problem has a feasible basis if and only if thagehl problem has optimum value 0.

If we discover that the Phase | problem does not have optimaloew, then this yields a s&tsuch that
Ybi> ) w
i€s i€S,j#S
(i,j)€E
Namely, the sef consists of those nodes whose shadow price is less than al tegihe shadow price of the slack
node. (If we set the shadow price of the slack node to 0, thesets simply consists of all nodes with non-positive
shadow price.) This certifies that no feasible solution caste

10.7 Complete example

Phase I: Slack node, artificial edges to all nodes; capaditiel directions of artificial edges are dictated by the net
supply. If the net supply of a node is positive (e.g. Denver), then the edge goes fremtde to the slack node and
capacity of this edge is; if the net supply is non-positive (e.g. Miami), then the edge goes from theksteode to
this node and capacity isb. (To remember this just note that capacity musn’t be negatikll artificial edges have
cost $1 and all other (real) edges have cost $0.

Starting basic feasible solution for Phase I: assign aelfedges flow equal to their capacity.
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Starting basisall artificial edges.

Basis shown in blue (labels on edges denote the flow amthowing shadow price of Slack, we calculate shadow
reduced costs). Everything else will not change (costgrices of nodes connected to Slack by basic edges; we use
capacities). See table below. the fact that shadow prices satisfy— y; = c;; for every
basic edgdi, j); if j = S, then the valug; is known and

Calculate shadow prices: sg3 = $0 for slack. )
so we plug itin to gety;.

Edge || DC|DH|CH|CN|NM | HM |
Cost $0 | $0 | SO | $0 | $0 | $0
Flow o o0o|O0]|O0| O0]oO

Capacity 2 1 1 2 1 3
Reduced cost| $0 | $0 | $0 | $0 | $2 $2

Edge || DS | CS|HS|NS | SM |
Cost $1 | $1 | $1 | $1 | $1
Flow 2 0 0 0 2

Capacity 2 0 0 0 2
Reduced cost| $0 | $0 | $0 | $0 | $0

Edge(H, M) has zero flow and positive reduced cestadding it into basis can make the objective smaller.
Find the loop and maximum.
Three edges are modified:
e flow on (H, M) is increased frond to A,
e flowon (S, M) is decreased frordto2 — A
e flowon (H, S) is decreased frofito —A
(both edges havepposite direction than(H, M)
on the loop)
MaximumA is 0 because the artificial eddgél, S) has no
flow on it and thus the flow on this edge cannot decrease.
The edge(H, S) leaves the basis whiléH, M) enters.
Flow does not change.

New basis: Calculate shadow prices by setting = $0:
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Calculate reduced cosfs — y; — ¢jj:

Edge ||DC|DH|CH|CN|NM | HM |
Cost $0 | $0 | SO | $0 | $0 | $0
Flow o o0o|O0]|O0|O0]oO

Capacity 2 1 1 2 1 3
Reduced cost| $0 | $2 | $2 | $0 | $2 | $0

Edge || DS|CS|HS|NS| SM |
Cost $1 | $1 | $1 | $1 | $1
Flow 2| 0] 0] 0] 2

Capacity 2 0 0 0 2
Reduced cost| $0 | $0 | $-2 | $0 | $0

The edg€C, H) has zero flow and positive reduced cost.
We increase the flow ofC, H) to A.

Flow on the edgéH, M) is increased ta (since(H, M)
has same direction afC, H) on the loop), while on
(M, S) is decreased t& — A and on(C, S) is decreased
to —A (both have opposite directions). This= 0 and
(C,S) leaves.

Calculate shadow prices by setting = $0;
then determine reduced costs:

New basis:

Flow increases t&\ on edgesC, H), (H, M) and de-
creases t@ — A on edgeq D, S) and (S, M). The ca-
pacity of (D, C) is 2, the capacity ofC, H) is 1, and of
(H,M) is 3. ThusA = 1 and(C, H) leaves the basis.
This time the flow finally changes.

Important Note: the edge(C, H) is not in the basis.
Nonetheless it carries flow. The flow ¢@, H) is equal
to its capacity — we say it isaturated.

We mark this by making the edd€, H) dashed.
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New basis: Calculate shadow prices and reduced costs:

(N, M) has zero flow and positive reduced cost
— increase flow ta\

(note that(C, H) has also positive reduced cost; how-
ever, it is saturated — saturated edges are entered if they
havenegativereduced cost)

A = 0 and the edgéN, S) leaves the basis

Calculate shadow prices and reduced costs:

(C,N) has no flow and> 0 reduced cost> enters

Flow decreases tb— A on edgeg D, S) and(S, M).
Flow increases td + A on edgg D, C) of capacity 2 and
increases ta on edgegC, N) and(N, M) of capacities
2 and 1, respectively.

A =1 and we have a tie for the leaving variable. We ar-
bitrarily choose(S, M) to leave. Note that flow changes
this time (sinceA > 0).
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Optimal solution (of Phase I) reached:

e each non-basic variable with zero flow has non-positiveceduost.
e each saturated non-basic variable has non-negative rédosé

We convert this to a feasible solution to the original probley removing the Slack node and artificial edges. Then
we start Phase Il. Note that from now on we use the originataxgts (unlike in Phase | where we had cost $0 for
real edges and $1 for artificial edges).

Edge | DC|DH | CH|CN | NM | HM |

Cost $5 [ $3 | $4 | $3 | $4 | $5
4 Flow 20| 1] 1] 1] 1
Capacity| 2 1 1 2 1 3
Calculate shadow prices by setting = $0: Calculate reduced costs — y; — ¢jj:

(s>

$0 %4

Now we have two options:
e the edgg D, H) hasno flow andpositive reduced cost> we can increase the flow qi, H)
e the edggC, H) is saturated and hasegativereduced cost> we can decrease the flow ¢6, H)

We choose (arbitrarily) do decrease the flow(Gh H) by A.

Flow on(C, H) and(H, M) changes td — A.
Flow on(C,N) and(N, M) changes td + A.
The capacity of C, N) is 2, and the capacity ¢fN, M) is 1.
This implies that largest is A = 0, since we cannot increase the
flow on (N, M) as itis already saturated
— (N, M) leaves the basis (but it stays saturated)
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Calculate shadow prices and reduced costs:

Flow on(D, C) decreases td — A. Flow on(C, H) de-
creases td — A. Flow on(D, H) of capacityl increases
to A.

— A =1and(C, H) leaves

Calculate shadow prices and reduced costs:

(N, M) is saturated and has negative reduced cost
— decrease flow 0N, M)

Flow on(D,C), (C,N), and(N, M) decreases tb — A.
Flow on(D, H) and(H, M) increases td + A.
The capacity of D, H) is 1 and the capacity qfH, M) is 3.
A = 0since(D, H) is already saturated

— (D, H) leaves (but stays saturated)

Calculate shadow prices and reduced costs:

Optimal solution found

e all edges witmo flow havenon-positivereduced cost (e.d.C, H) has no flow and reduced cost $-2)
e all saturated edges haveon-negativereduced cost (e.d.D, H) is saturated with reduced cost $4)

Optimal flow consists of one unit accross all edges(iytH ). The cost is $5+$3+$3+$5+$4=$20.
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10.8 Summary

NetworkG = (V, E) hasnodesV andedgesE.
e Eachedgéi, j) € E has acapacity u;; andcostc;;.
e Each vertex € V providesnet supply b;.

ForasetS C V, write S for V' \ S and writeE(S, S) for the set of edge§, j) € E withi € S andj € S. The pair
(S,S) is called acut. (Where applicable) there are two distinguished nodessourceandt =sink.

Minimum spanning tree

Primal Obstruction (to feasibility) : B
min 2 CijXij setS C Vwith® # S # V suchthatE(S,S) = @
(i,j)€E
Z xij > 0 forallS CV
(i,))€E(S3) where@® # S #V

edges frons to S
xjj > 0 forall (i,j) € E

Shortest path problem

Primal Dual
min Z CijXij maxys — y;

(i,j)€eE 1 i=s ..
Yoxj — Yoxp =4 -1 i=t foraliev ¥ —yj=cj foral(ij)ek
jev jev 0 else . i
(iieE (iee yi unrestricted foralf € V

———

——
flow out ofi flow into i
xjj > 0 forall (i,j) € E

Obstruction (to feasibility): setS C V with s € S andt € S such that:(S,S) = @

Maximum-flow problem
Primal Dual
max z min Z ui]-vl-]-

z i=s (ij)eE
Z Xij — 2 Xji = —z i=t foralieV i —yj + 0 >0 forall(i,j) € E

jev jev 0 else
(ij)€E (ji)€E v —ys =1
0 < xj < uy forall(ij)eE v; > 0 forall(i,j) € E
z unrestricted y; unrestricted foralf € V

Obstruction (to feasibility): setS C V with s € Sandt € Ssuchthat > ) u;

(i.j)€E(S,S)
N———
(no flow bigger than the capacity of a cut) capacity of the cutS, S)
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Minimum-cost (s, t)-flow problem

Primal

min 2 CijXij

(ij)€E
f i=s
Y, xij - ) oxi=q —f i=t
jev jev 0 else
(i,j)€eE (ji)eE
0 < x5 < wy

foralli e V

forall (i,j) € E

Dual
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maxfys _fyt — Z Lll'jZJij

Yi —

(ij)eE

y;i — vij < ¢ forall(i,j) € E
vij > 0 forall(i,j) € E
y; unrestricted foralf € V

Obstruction (to feasibility): setS C V withs € Sandt € Ssuchthatf > ) u;

Transshipment problem

(i,j)€E(S,5)

forall (i,j) € E

yi unrestricted forall € V

Primal Dual

min 2 cijxl-]-

(i)€E max Y _ by;
eV

Yoxij— Y xi= b forallic V <

jev jev ~ Vi — Y =G
(i,j)€E (ji)ee ~ hetsupply

xij > 0 forall (i,j) € E

Obstruction (to feasibility) : setS C V such thatz b; > 0andE(S,S) =@

Minimum-cost network flow problem

Primal
min Z CijXij
(i) €E
Z Xij — 2 Xji = b; forallieV
jeEV jeV
(ij)€E (ji)eE

0 < xj < uy

Obstruction (to feasibility): set5 C V suchthafy "b; > )
i€s (ij)€E(S,S)

forall (i,j) € E

ieS

Dual

max Z biyi — Z ul-]-vi]-

ieV

Yi — Y —

Lll']'

vij < Cij

(i,j)€eE

forall (i,j) € E

vij > 0 forall(i,j) € E
y; unrestricted foralf € V
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Game Theory

During the 8PM to 9PM time slot, two TV networks compete foraamlience of 100 million viewers. The networks

announce their schedule ahead of time and do not know of @hel'decision until the show time. Based on that a
certain number of people will tune to Network 1 while the nedt watch Network 2. The market research revealed
the following expected number of viewers of Network 1.

Network 2

Network 1 | Western Soap Opera Comedy For instance, if Network 1 shows a Western while
Network 2 shows a Comedy, then

Western 35 15 60 60 million viewers will watch Network 1, and
Soap Operg 45 58 50 100 — 60 = 40 million watch Network 2.
Comedy 38 14 70

Question: What strategy should the two networks use to maximize thiewership?

Terminology:

Network 1 is arow player.

Network 2 is acolumn player.

The above matrix is calledayoff matrix .

This is aconstant-sumgame (the outcome for both players always sums up to a cari€i@mnillion).

How to solve this game? Let us look at the structure of out@rAer instance, if Network 1 chooses to show Western,
then it can get as many as 60 million viewers (if Network 2 cdesito show a Comedy) but also as little as 15 million
(if Network 2 shows a Soap Opera). Thus this choice cannatagii@e more than 15 milion viewers for Network 1
(in the worst case). If the network instead chooses to showragdy, the situation is even worse, since then we can
guarantee only 14 million viewers (the minimum in the 3rd yoWhe best therefore for Network 1 is to choose to
show a Soap Opera in which case 45 million or more viewerstwile to Network 1 regardless of what Network 2
does. Note that in this strategy Network 1 (being the row@iagimply calculates thew minimum of each row and
then chooes the row witlargestrow minimum.

By the same argument, Network 2 (being the column playerytaximize its vieweship by calculating eachlumn
maximum and choosing column with the smallest column maximum.

Itis easy to see that the two outcomes will satisfy the folf@pinequality

max (row minimum) < min (column maximum)
all rows all columns

In this example, Network 1 chooses Soap Opera and Networlo@ses Western whereby 45 million viewers will
watch Network 1 and 55 million will watch Network 2. Note thhts choice is simultaneously best for both Network
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1 and Network 2 (we have equalitax (row minimum) = min (col maximum)). This is called ssaddle point
and the common value of both sides of the equation is calleddlue of the game.

e An equilibrium point of the game: choice of strategies for both players such thilther player can improve
their outcome by changing his strategy.
e A saddle pointof a game is an example of an equilibrium.

11.1 Pure and Mixed strategies

Note the in the above example each player’s strategy wasndigistic; they each examined possible outcomes and
made a specific single choice to follow. This is calleglae strategy.

Unfortunately, there are games with no saddle points aridwWolg a pure strategy may not always give the players
the best outcome. (Consider for instance Poker — see neidrs¢dNe need to generalize our definition of strategy.

Instead of choosing one fixed move, the player considers@tesiand chooses randomly according to a distribution.
The outcome of the game will depend on the chosen distributio

e amixed (randomized) strategy(xy, xp, . . ., X, ) iS a probability distribution over possible moves of the player
(i.e. satisfiesc; +xp + ... +x, = 1)
e optimal strategy is a strategy maximizing thexpectedgain for the player

Note that since we are now using chance we can sometimes ga& sometimes less; thus we will settle for maxi-
mizing the average outcome (if, say, we play the game reglyeta many rounds).

Betting Game

Player 1 draws a card from a card deck (and hides it from therqtlayer). Then he decides to eithgrssin which
case he discards the card and pgygo Player 2, or he wilbet in which case it is 2nd player’s turn. Player 2 can
eitherfold in which case she payd to Player 1, or she wiltall and the card is revealed.

If the revealed card iBigh (10, Jack, Queen, King, Ace), then Player 2 pg¥$o Player 1. Otherwise, the cardidsv
(2 through 9) and Player 1 pa$2 to Player 2.

Let us analyze the possible strategies for Player 1. Givendnd, the card can be either high or low. Based on that the
player can either pass or bet. So there are 4 possible sestgass on both high and IoR®), pass on high and bet
on low (PB), bet on high and pass on loBIP), and bet on both high and lov8B). Player 2 can eithetall or Fold.

The possible expected outcomes of the game are then as $ollow

Player 2 Thus, for instance, suppose that Player 1 plays straB&ygbet on
R high, pass on low) and Playerc2lls. Then either the card is high,
Player 1 Call Fold ow i i
y Minimum Player 1 bets and wir&2, or the card is low and Player 1 folds and
loses$1. The chance of getting a high cardcbig13 and thus getting
PP -1 -1 -1 a low card has probability d&f/13. So on average Player 1 gains
18 3 138
PB 113 13 113 E$2_|_ E(_$1) = 3 ~ $0.15
BP 2 _3 _3 13 13 13
163 B 163 On the other hand, if Player 1 plai® but Player Xolds, then the
BB 13 1 13 expected gain of Player 1 is only% ~ —$%0.23. So clearly, the
Column 2 1 intuitive strategyBP (bet on high, pass on low) is not necessarily
Maximum 13 best against a worst-case opponent.

Note that this is @ero-sumgame since either Player 1 pays Player 2 or vice-versa (tineo$the players’ gains is
zero). Looking at the table above, we see that largest rovinmaim is—% while smalest column maximum II% So
this game does not have a saddle point (unlike the first ganiseassed).
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Notice that some strategies are better then others in adiilpescases. For instance,
playing BP instead ofPP always gives better outcome for Player 1. We say that the Player 2
strategyPP is dominated by another strategy (in this caB®). Clearly, if a strategy Player 1| Call Fold
is dominated, the player can always do better by playingterattrategy. Thus we
can safely remove any dominated strategy from consideratithout changing the BP
problem (its optimal solution). In our case, this elimirsatiee strategPP as well as

the strategy’B which is dominated by the strate@®B. This leaves us with only two BB
strategies and the pay-off matrix shown on the right.

[~
|0

Y

|
o @
|-
[e6

A expected
Now we are ready to determine tihest mixed strategyfor Player 1. The \ gain of

player chooses to pla§P with probabilityx; or playsBB with probabilityx,, Player 1
wherex; + x, = 1. We denote thisnixed strategyas(x;, x;). An expected

Player 2 folds g

outcomeof this strategy is3x; — S x, if Player 2callsand is— & x; + x if —%
Player 2folds. So the worst-case outcome is simply the minimum of the two Player 2 calls

; 2 6 3
min {ﬁxl — 13X2, —13X1 + XQ}
(x1,%2)

Sincex; + x, = 1, we can simplify this to

—
1 X1
in{8y, -6 1_16
outcome= rrgn{wxl 21— 18x} \

minimum

o

We can plot the possible outcomes (based on the choiceg aé shown on the right. From this we determine that the
best mixed strategy for Player 1 is the paihtorresponding to stratedy, x,) wherex; = 19/24 andx, = 5/24.
This guarantees the player expected gaihAH9 ~ $0.025.

Answer: The best strategy for Player 1 is to randomly choose betwettimg on high, passing on low with probability
791% or always bet with probabilitf02%. This gives him expected gain 62.5.

Similarly, we can determine the best mixed strategy for @&y Let(y1,y») be

the probabilities of Player 2 calling/{) or folding (/o) wherey; + v, = 1. If efopsicgﬁd
Player 1 play8P, then the expected outcome (loss) for Player %'ysl — %yz. Player 2
If Player 1 playBB, then the outcome is %yl + y. Thus the worst-case loss for
Player 2 is the maximum of the two.

Player 1 plays BB

max { Zy1 — £5v2, —13v1 + ¥}
(y1y2)

Using the fact that/, + y, = 1, this simplifies to

5 3 19
H;?X{ﬁyl — 15, 1—3y1}

0 1 y
We can plot the possible outcomes as shown on the right. Tétestiategy for ~_+"pjayer 1 1
Player 2 is the poinE corresponding to stratedy, y») wherey; = % andy, = plays BP
% with expected loss o% ~ $0.025. Thus the best strategy for Player 2 is to call %y1 - %

with 662 % probability and to fold witt831% probability.

Linear programing

We can now see what are the best strategies for the two playkger 1 tries to choose probabilities, x, so as to
maximize themin{%xl — 16—3x2, —%x1 + x5} where probabilitiesc;, x, sum up to 1. Similarly, Player 2 chooses
his probabilitiesy, y, so as to minimizenax{ &y, — 32, —5y1 + y2} wherey; + y» = 1. Using the tricks we
learnt, we see that both these problem can be transformetrietir programs as follows.
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maxz min w
subjectto  &x; — 3x > z subjectto &y — Hy2 < w
Bn o+ x>z By o+ oy < w
X1 + Xy = y1 + y2 = 1
x1,% > 0 yi,2 = 0
which we can rewrite as follows:
max z min w
subjectto —Zx; + Fxo + z < 0 subjectto —Zy1 + Sy + w > 0
1—33x1— X2 +z <0 16—3y1—y2+w20
X1+ X =1 vi + =1
x1,x > 0 yi,y2 = 0
z unrestricted w unrestricted

Notice that the two programs atials of each other. This is not a coincidence. In fact, it is alwtys case in
zero-sum (constant-sum) games. This tells us that the ap#piutions to the two programs have tseme value

by Strong Duality, which defines thalue of the game. Moreover, the optimal strategies for the twyqra satisfy
Complementary Slackness (verify this for the solutions wentl above). In other words, the solutions to the two
problems form arequilibrium point (neither play can do better by changing his/hersessgt In the literature, this

is often calledNash equilibrium.

11.2 Nonconstant-sum Games

In the real world, more often we find situations where the gffdisses of the players are not necessarily constant. This
happens for instance in cases where cooperating playegatamore together than by competing alone.

A prototypical example of this is the famo@sisoners’ dilemma. In Criminal 2
this problem, we have two criminals who commited a crime baté is
not enough evidence against both of them. The district rtogives Criminal 1| Confess Don't
each a chance to confess. If both confess, then they bothjgi fiar 5 confess
years. If only one of them confesses, he is let free and ther atiim- Confess | (—5,—5) (0, —20)
inal gets 20 years in jail. If neither confesses, they arér santenced

for 1 year for a misdemeanor. The two criminals are not altbwe Don't
communicateWhat is the best strategyfor each of them? confess

The pay-off matrix now has different pay-offs for the twoysas as shown on the right. Clearly the pay-offs do not
sum up to the same value each time. If they both confess ttebygeato jail for 5 years (sum is 10), while if they both
do not confess, they each go to jail only for 1 year (sum is 2).

Note that both confessing is aguilibrium point, since if only one of them changes his mind (does notess), he
goes to jail for 20 year (which is more than 5 he gets by coirigys However, if they both change their mind (do
not confess), they both improve their situation (each omlisd year in jail). This does not change our conclusion
that confessing is an equilibrium. To be an equilibrium wé/ameck that each player by himself cannot get a better
outcome if he changes his mind (and others play the same way.

On the other hand, both not confessing, is not an equilibrginte either player can change his mind and confess and
thus not go to jail (while the other player gets 20 years —rage& only consider a single player changing his mind).

To solve this game, we see that the strategy’t confessis dominatedby strategyConfessin both players (the player
can always do better by confessing when playing against atvease opponent). By eliminating these strategies, we
are left with the unique equilibrium where both players asst

Recall that this is @ure (deterministic) strategy. In other cases, eliminating ohated strategies will leave more than
one choice and we formulate the maximization problem jkst We did before. Solving it for both players gives us
their optimalmixed strategy.
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Integer programming

Integer Linear Program

maX ¢X . .
Ax — b — pure IP = all variables integer
N — mixed IP = some variables integer
x>0 . _ ; . -
. — LP relaxation of an ILP = dropping the integer restriction
x integer
Example:
(PURE) INTEGERPROGRAM MIXED INTEGERPROGRAM LP RELAXATION
max 4xq + 2x3 + 3x3 max 4x1 + 2xy + 3x3 max 4xq + 2xp + 3x3
5x1 + 3xp +4x3 <7 5x1 +3xp +4x3 <7 5x1 4+ 3xy +4x3 <7
X1,X2,X3€{O,1} ngl/ngl Olellexe)Sl
X3 € {0,1}
optimal solution: optimal solution: optimal solution:

x1=0x=x3=1,z=5 x=06,x0=0,x3=1,z=54 x1=1,x=0,x3=05,z=5.5

12.1 Problem Formulation

Review LP formulations

Standard LP problems: Tricks:
— diet problem 1. maximum/minimum:
B E{Od:;.dm'x max{f,¢} <h <= 2constrainty <h
— blending ¢ <h
— inventory
— scheduling min{f,¢} >h <= 2 constrainty > h
— budgeting g>h

2. absolutevalue: |[f—g|<h <= 2constraintf —g <h

§—f<h
(to see this, note thaf — g| < h means thag lies betweerf — h andf + h; thatis,f —h < g < f +h)
3. positive/negative values f = xt —x~ wherex™, x~ are new non-negative variables

= nowx™ is the positive part of (or zero) andc~ the negative part of (or zero)
Important: must make sure that andx~ are never both basic in the optimum, else it doesn’t work

alternatively: 2 constraints  f < x* and —f<x- (with similar caveats)
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Standard problems

Knapsack - resource allocation, portfolio selection

| investment  yield max 16xq + 22x; + 12x3 + 8x4

— 4 possible investments L) $5000 - $16,000 St 7xp+ 4wt dx<ld
— $14,000 cash available 2| $7,000  $22,000 x1,%2,%3,%4 € {0,1}

3 $4,000 $12,000 . .

4 $3.000 $8.000 optimal solutionz = $42,000

X1 :O,XZ:JC3:X4:1
(burglar Bill wants to steal items of as much value as posstuit has has limited size knapsack)

LP relaxation of the Knapsack problem is callecctional Knapsack
— optimal solution: pick items with highest value per unit

| investment yield/$1

2?388 :gig optimal solutionz = $44, 000

$4,000 $3.00 1= =Lx3=05x=0
$3,000 $2.67

max 16x1 4 22x, + 12x3 + 8xy
5x1+ 7xp 4+ 4x3+3x, <14

0<x1,x9,x3,x4 <1

A WN PR

More constraints:
‘at most two investments’ <— X1+ x4+ x3+x4 <2
‘if invested in #2, then must invest in #3' <«—- X3 > Xp

‘if invested in #1, then cannot invest in #4’ <«— x1+2x4 <1

Fixed-charge problem- facility location

company needs to serve 3 regions with weekly demands 80n@d@iGunits, respectively.
can open a facility in any of 4 cities (New York, Los Angelefi€ago, Atlanta)

each facility can ship 100 units (per week)

opening a facility caries operating costs (per week)

Transportation costs (per unit)
Facility Cost Regionl Region2 Region3

New York  $400 $20 $40 $50
Los Angeles  $500 $48 $15 $26
Chicago $300 $26 $36 $18
Atlanta $150 $24 $50 $35

x;; = amount transported from facilityto regionj
y; € {0,1} =indicates if facility is opened (1) in cityor not (0)

min  400y; + 20x11 + 40x15 + 50x13 + 500y, + 48x31 + 15x27 + 26x23
+300y3 4 26x31 4 36x32 + 18x33 + 150y4 + 24x47 + 50x4p + 35x43

X11 + X21 + X31 + x41 > 80 x11 + x12 + x13 < 100y, 1,92, Y3,y € {0,1}

X1 + X0 + x32 + x40 > 70 X21 + X220 + X203 < 100y, '

X13 + Xo3 + X33 + X43 > 40 X31 + X320 + x33 < 100]/3 xij > 0fori 6 {11 2, 3/4}
x41 + X42 + x43 < 100y4 j€{1,23}

Set-cover problem

Distance City 2 City 3 City 4 City 5 City 6
City 1 20 30 30 20
25 35 20 10
15 30 20
15 25
14

e open facilities to serve 6 cities
e a facility in one city can serve neigh-
bouring cities within 15 miles

City | 1 2 3 4 5 6
Cost| $500 $340 $450 $250 $200 $300
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minz = 500x; + 340x; + 450x3 + 250x4 + 200x5 +
x; € {0,1} =indicates if a facility 300x¢
is opened in city

X1+ X2 >1

City | 1 2 3 4 5 6 X1 + Xp +x6>1

. . X3+ x >1
Neighbouring| 1,2 1,26 3,4 3,4,5 4,56 2,5,6 xi +xi 4 xs >
cities X4+ x5 +x>1

X + x5+ x5 >1

X1, X2, X3, X4, X5, %6 € {0,1}
Non-linear objectives— price discounts (piece-wise linear functions)

e first 500 gallons — 25 cents write x = x1 + xp + x3 thenz = 25x; + 20x;, + 15x3
e next 500 gallons — 20 cents

e any gallon above that — 15 cents where0 < xj,x; <500 x; > 500y; > x3 > 500y,

andxz > 0
z = cost ofx gallons 3= My> > x5 y1,y2 € {0,1}
i min 2 cijxij
Network problems - Travelling salesman (if)EE
¢ find a shortest cycle through all nodes in. -1 and Zx'i —1forallic V
of G = (V,E) whereV = {1,...,N} = =
e x;; = lifedge(i, ) on the route w — u; + Nxg < N—1forall (i) € E,i,j £1

e u; = kif i is k-th node on the route
u; >0 and xjj € {0,1}

Why this works? The first two constraints make sure that exactly one edgensngpin and one edge going out
of each node. So the chosen edges form a collection of cytflesige (i, j) is used, i.e. ifx;; = 1, then we have
u; —u; + N < N —1and sou; < u;. This excludes any cycle on nodg ..., N}. So there can only be one cycle,
through all nodes. The objective function selects such Eafaninimum cost.

Scheduling problems- non pre-emptive job scheduling
e schedule jobs on a machine(s), jobs have arrival time antkpsing time, minimize waiting time
e x;j = 1ifjob jisi-th to be processed on machine
e once job is started, it cannot be interrupted (no pre-emptio

Tricks
Or constraint: f <0org <0 <= 2constrainty < My y € {0,1} andM is a large number
§<M(1-y)
If-then: if f>0,theng >0 <= 2 constraints-g < My y €{0,1} andM is a large number
f=M1~-y)

. o _ ityt. oty =1
Piece-wise linearfunctionz vi,---,y €4{0,1}

e breakpointdq, by, ..., b; fs
o with valuesfy, fo, ..., fi ﬁ 2 = i’j i
X =b1x1+byxo+ ...+ bixy f2 x3 < Y2+ ys3
z = fix1+ foxo + ...+ fix; .
X1+x0+...+x=1 f
X1 < Yi—2 + Y1
by baby by bs xp < Yi-1

Why this works? The variabley; indicates thatr is betweerb; andb;1; if y; = 1, then onlyx; andx;; can be
positive; so we have; + x;;1 = 1 and thusc = b;x; + b;1(1 — x;) andz = fix; + fi11(1 — x;) where0 < x; < 1;
this exactly corresponds to the segment betw@ery;) and(b; 1, fi+1)
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12.2 Cutting Planes

Let us go back to our toy factory problem. The toys are sold whalesale distributor who demands shipments in
packs (boxes) of 30. There’s no limit on how much we can preduc

Max 3x1 + 2x» 30w1 =X Max 90w1 + 60w,
30ws — x 30w; + 30w, < 80
x1 + xp < 80 2 =X
— — 60w; + 30w, < 100
2x1 + x < 100 wy,wy > 0 o = 0
o= 0 integer ’integgr

Consider the first constraifi®w, + 30w, < 80. Let’s divide both sides b$0. We obtainw, + w, < g. Notice that
the left-hand side of the constraint is an integer, whilerthbt-hand side is a fraction. Therefore

8 2 2
witwy < - =2+ — wt+w,—2< - — wy+wy—2<0
—— 3 3 —_—— 3 —_—
integer integer pe cut

What happens? We rewrite the constraint so that the left-hand side is iatemd the right-hand side is a positive
fraction less than one. Then, since the left-hand side égértand is less than a fraction of one, it must be zero or
less. This gives us mew constrainthat we call acut or acutting plane. We can add this cut as our new constraint
without removing anyinteger feasible solution.

Doing the same for the second constr&®da, + 30w, < 100:

10 1 1
60w, + 30w, <100 — 2uwi4+wp < —=834+=- — 2w 4+w,—3< = — 2w +w,—3<0
—— 3 3 —_—— — 3
integer integer <" 1 cut

Integer Linear Program

3 ° ° ° ° ° ° Max 90w, + 60w,
optimal <
fractional wp + wy <2
solution 2w + wy < 3

2e L] ° ° w1, Wa >0

optimal integer
integer )
solu?ion LP relaxation

10 ) Max 90w1 + 607,02

w, + wy <2
2w, + wy, < 3
¢ ° *— w1, W2 Z 0
B : 3 *

Note: Every feasible solution to an integer linear program is al$easible solution to its LP relaxation. Thus if the
LP relaxation has integer optimal solution then this is aroptimal solution to thelLP .

The LP relaxation has an optimal solutien = w, = 1 of valuez = 150. Since this is an integer solution, it is also
an optimal solution to the original integer linear program.

Conclusion: for optimal production, we should produce 1 box of each ofttietoys.

Now, suppose that a different distributor demands that tdgiers are delivered in boxes of 20, while toy trains in
boxes of 25. We simplify the constrains by dividing both sithy 5 (and the objective by 10).

20w, = x Max 60w, + 50w, Max 6w, + 5w;
Max 3;‘1 :[ Zf < s Bws— 20wy + 25w, < 80 4wy + 5w, < 16
2x1 N x2 = 100 40w, + 25w, < 100 8wy + 5w, < 20
' x x2 > 0 w1, w2 2 0 wy,wpy > 0 wy,wy > 0
152 = integer integer integer

Notice that this time we cannot directly get fractions on ttiglat-hand side while keeping the left-hand side integer.
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However, let us multiply the first constraint by 3 and add ittte second constraint.
20w + 20w, = 3(4wq + 5wo) + (8wy + 5wy) < 3 x 16 420 = 68
<16 <20
We can now divide both sides by 20 to obtain 4+ w, < 3.4. So again we can derive a cut.

w+w; <34=34+04 — wi+w,—-3 <04 — w+w,—-3<0
—— —_———— ~~ —_—
integer integer <1 cut

e o
. optimal
fractional

3 solution Max 6w, + bSw,
° ° °
new optimal 4wy + dwy < 16
fractional 8wy + Swy, < 20
solution
26 29 ° ° w + wy =3
wy, Wy > 0
integer
10 °
)
1 2 3 4 5 * 5

We need a more systematic approach to finding cuts.

Gomory cuts

We can derive cuts directly from solving the LP relaxatidrthk relaxation has an integer optimal solution, then we
are done since this is also an optimal solution to the intpgavlem. If the optimal solution iBactional, we will use
rounding to obtain a cut (as explained below). This cut wilit off the fractional solution and thus make the feasible
regionsmaller. This makes sure that weprove in each step.

Consider the optimal dictionary to our problem.
Max 6w, + S5w»

4w + Swy < 16 5 1 5
8wy + Swy; < 20 add slack variables Wy = = — =x4 + =x3

w + wy <3 (non-negative integers) 3 3
wy,wp > 0 Wy = é 4 lx _ §x
integer 2 3 4 370

Max 6w, + 5w — § _ 1 @
4wy + 5w, + x3 =16 3= 3 gt g

8wy + 5wy + X4 =20 50 1 10
w1 + wy + x5 = 3 z = 3~ 53(4 _ ?xS

w1, Wy, X3,X4, X5 2 0

integer
Chooseany line of the dictionary with &actional constant (in this case every line qualifies, includiihgThis choice
is arbitrary but good practice suggest to choose the line where thedrarsticlosest to 1/2.

We pick the expression farand move whole parts to the left, keeping only fractions anrtght. This time we also
have fractional coefficient with variables. We rearrangedkpression so that on the right each variablertegmtive
fractional coefficient, while the absolute constant aitive fraction.

_ 50 1 10 __ 2 1 1
z = ? —§X4— ? XS — Z+3X5—16—§ _§x4_§XS — Z—|—3X5—16§0
~— —_———— —_—
16+§ -3-1 negative fractions cut

What happens?Because the coefficients of variables on the right-handasid@egative, the value of the right-hand
side is 2/3 or less (cannot be more, since the variables ar@egative). So the value of the left-hand side is also at
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most 2/3, but since the left-hand side is integer, the valusctually at most 0. We add the cut to our dictionary by
introducing aslack (non-negative integer) and express it using the fractions.

z4+3x5—164+x,=0 — x6:—(2+3x5—16):—(3—%954—%355) — x6:—%—|—%x4+%x5

4 [ ] [ ] ([ ] [ ] [ ] 4 [ ] [ ] ([ ] [ ] [ ]

° [
new optimal
(integer)
solution

°

original

fractional

solution
[)

Dually feasible dictionary

_ 51 5 _ -
w1 = Z ix‘l + sz — use Dual Simplex w1 LT+ 2x5 X6
W2 =3t st 3% x¢ leaves (values 0) wy = 2 - 3% + X
Y3 = % - %x4 + 2—399(5 ratio test: X3 = 2+ 7x5 — X6

_ 241 1 xg:(1/3)/(1/3) =1 o w43
X = + 3x4 + 3X5 4 X4 X5 X6

- - xs:(10/3)/(1/3) = 10

= B 1y -0 — 16 — 3xs —

z 3 73N T 35 — x4 enters z X5 %6

Optimal integer solution found = 1, w, = 2 with valuez = 16 (corresponds t§160 of profit).
Conclusion: optimal production consists of producing one pack of tog&ssk, and two packs of toy trains.

Cutting planes algorithm

This worksonly for pure integer linear programs.

1. Solve the LP relaxation.

2. Ifthe LP isinfeasible thenreport that the problem isnfeasible, andstop.
3. If all variables are integers, the@port the solution andtop.

4. Else in the optimal dictionary, pick any line with fraatal constant.

(a) Rewrite the line by moving whole parts to the left so that
o the absolute constant on the right is a positive fractioss(tean 1),
o the coefficients of variables on the right are negative foast(less than 1 in absolute value).

(b) Make theright-hand side < 0 to form a new constraint (cut).
(c) Introduce a slack variable to the cut and add the reguéiquation to the dictionary.
(d) Solve the resulting LP using the Dual Simplex method &edh igo back to 2.

Example. suppose that the dictionary contains

xlzg—%x2+%x3+2x4

Rewrite by moving whole parts to the left so that the coeffit@ variables on the right amegative

X1 = % —%XZ +%X3—|— 2x4
~— = 2
243 -1-3 4-1

X1+XZ—4X3—23C4—2: %—%XZ—%JC::,
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(Notice: x3 had positive coefficien%%, and we had to tak§ =4 % to get a negative coeff on the right.)
The right-hand side isc 1 but must be integer (since lhs is). We introduce the cut tretas is at most 0.

1 1 1 ; 1 1 1
7 — 5% — 3x3<0 add slack— new constraint X5 = — 5 + 3% + 53

12.3 Branch and Bound

For illustration, consider the toy factory problem 4 i o ot g o
where toy soldiers are delivered in boxes of 20 and
toy trains in boxes of 25. 3 . . . . .

Max 6w; + 5w, -
4wy + 5wy < 16 t no integer
8w1 + Swi < 20 Wy 22 ? - = * e * P * PY t/pomthere

0 S w1 S 2

0<w; <3
wy, wy integer w251¢ e * - *

Notice that we also assume that the variablgs
andw, are upper-bounded (I®/resp.3).

Enumerating solutions by Branching

Consider the variabla,. Since we are only interested solutions where this variglda integer, we can also assume
thatw, does not attain any value strictly between 1 and 2. Thissstili¢ feasible region onto two parts, one where
w, < 1 and one wherev, > 2. We solve the problem on each of the two parts independentlypéck the better

of the two solutions. In other words, viganch into two subcases In each of the subcases, we can again consider
an integer variable, say, and exclude all fractional values between, say zero and\&eebranch into two further
subcases and continue this process until the values otadjénvariables have been determined. We can visualize this
using abranching tree.

‘LU2§1 ‘LU222
w1<1 wq>2 w1<1 w1>2
wy<0 wy>1 wp<0 wy>1 wy <2 wy>3 wy<2 wy>3
wy = w, =2 w, =2 w =2
wy, =0 wy =1 wy =2 wy, =3
z=12 infeasible infeasible infeasible
w1<0 \w121 w1<0 wi>1 w1<0 \w121 wlgo/ w21

w, =0 w; =1 w, =0 w =1 w, =0 w; =1 wy = w =1

wy; =0 wy =0 wy =1 wy =1 wy =2 Wy =2 wy =3 wy =3

z= z=6 z= z=11 z=10 z=16 z=15 infeasible
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We evaluate the constraints in the leaves and the propagsttstiution bottom-up.

w, =1
Wy = 2
=1
‘LU2§1 z 6 ‘LU222
w, =2 w; =1
wy; =0 Wy =2
z=12 z=16
w1<1 wq>2 w1<1 w1>2
w, = 1 w, = 2 w = 1
wy, =1 wy, =0 wy =2 infeasible
z=11 z=12 z=16
w<0 wy>1 w, <0 wy>1 Wy <2 wy>3 Wy <2 wy>3
wy, = w; =1 w) =2 w; =2 w =1 w; =0 w) =2 w) =2
wy, =0 wy =1 wy; =0 wy; =1 wy =2 wy, =3 wy =2 wy, =3
z=6 z=11 z=12 infeasible z=16 z=15 infeasible infeasible
<0 \w121 w1 <0 w>1 w1<0 \w121 wlgo/ w121
w, =0 wy =1 w, =0 w, =1 w, =0 w) = w, =0 w, =1
wy; =0 wy; =0 wy; =1 wy = wy =2 wy = wy =3 wy, =3
z= z= z= z=11 z=10 z=16 z=15 infeasible

Optimal solution isv; = 1, wy, = 2 with z = 16.

Using bounds in branching

We can shorten the branching process if we have sbeugistics, a way tobound or estimate the value of the
objective function in subsequent subcases. For instance, in the albove somehow know that best possible value
in the subcase, < 1 is at most 12, and we also know that = 0, w, = 3 is a solution of value 15, then we don’t
need to branch into this subcase; the best solution that vdviimd there would be worse that the one we already
know. This idea is at the basis of the Branch-and-Bound naktho

How do we find a bound on the objective?\Ve solve the LP relaxation by some means:

1. Graphical method

2. Simplex algorithm

3. Special purpose algorithms, for instance:
(a) Knapsack - Fractional Knapsack
(b) TSP - Assignment problem
(c) Facility location - Network algorithms

Branch and bound using the Simplex algorithm

The process goes as follows: welvethe LP relaxation of the problem. If the optimal solution is such that all
variables havénteger values, then we have found ameger solution and we are done. Otherwise, there is at least
one variable whose valuefisactional . We use this variable to branch. Namely, suppose that thabtarisx; and the
value isx; = a. We branch intdwo cases (1) x; < |a], and (2)x; > [a]. Note that this shrinks the feasible region,
since it cuts-off the solution that we used to branch (in sudtition,x; had values, but in neither of the two subcases
x; can have this value). This way we always make progress anycoboahch close to the fractional optimum, which is
where the integer optimum is likely to be (if exists).

The LP relaxation can be solved by the Graphical method @@in#nsional problems). For more general problems,
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we can use the Simplex algorithm aradisedictionaries in subsequent steps.

Integer program  May 6w, + 5w, wy = 1+ 0.25x3 — 0.25x4
Max 6w; + 5w, 4wy + Swp+x3 =16 w, = 24 — 04x3 + 02xy
4w1—|—5wZ§16 8wy + bSwsp + x4 =20 — 18 — 05 — 05
8w, + 5wy < 20 . . z = -0X3 DXy
w1, Wy =2 X3,X4 = . . .
w1, %;JﬁteZQ 2r integer Optimal fractional solution

The optimal solution is fractional, becausg = 2.4 is not an integer. We branch inte, < 2 andw, > 3.

wy<2 wy>3
Subproblem 1 Subproblem 2
Subproblem 1: Subproblem 2:
w; = 1 + 0.25x3 — 0.25x, Bounds: w; = 1 + 0.25x3 — 0.25x4 Bounds:
wy) = 24 — 04x3 + 0.2x4 0<w <o wy) = 24 — 04x3 + 0.2x4 0<w <o
z = 18 — 0.5x3 — 0.5x4 0<wy, <2 z = 18 — 05x3 — 0.5x4 3<wy, <o

In both subproblems the dictionary is not feasible. To fixvié, use the Upper-bounded Dual Simplex method. Let us
first solveSubproblem 1

w; = 1 + 025x3 — 0.25x, Bounds: check lower bound€) <1 =w,0 <24 =w,
wy =24 — 04x3 + 02x4 0<w; <oo check upper boundso; =1 < oo, wp =24 £ 2
z = 18 — 0bxz3 — 05x4 0<w,<2 — replacew; by wy, =2 — w),
— — /
w; = 1+ 025r3 — 025x; Bounds: check lower bouncsd = 1 = w1 0 7 04 =3
wh = —04 + 0dx; — 024  0<w <oo 7 a leaves, rato testes £ 0.5/04 = 125
z = 18 — 05x3 — 05x4 0<wy<?2 Y4
=72 = — x3 enters
wy = 125 — 0.125x4 + 0.625w}, Bounds: optimal solution found:
X3 = 1+ 05y + 2505 0<w <o wy =125, wh =0 — wp =2
z =175 — 0.75x4 — 1.25w§ 0<w, <2 z =175

The optimal solution is fractional, sinee; = 1.25. We branch onvy < 1 andw; > 2.

w, =1

wo =24
z=18
wy <2 wy>3
wy; =1.25
wy =2 Subproblem 1
z=17.5
w1<1 wy>2
Subproblem 3 Subproblem 4
Subproblem 3: Subproblem 4;:
wy = 125 — 0.125x4 + 0.625w) Bounds: wy; = 125 — 0.125x4 + 0.625w) Bounds:
x3 = 14+ 05y + 25w 0<w; <1 x3 = 14+ 05x4 + 25w, 2 < w < oo

z = 175 — 075x4 — 1.250) 0<w, <2 z 175 — 0.75x4 — 1.25w)} 0<w, <2
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We again solvé&ubproblem 3using the Upper-bounded Dual Simplex method.

w; = 125 — 0.125x4 + 0.625w, Bounds: check lower bound€) < 1.25 = w,0 <1 =1x3
x3 = 14+ 05y + 25w, 0<w <1 check upper boundso; =125 € 1,x3 =1 < o0
z =175 — 075x4 — 125w, O0<w,<2 — replacew; by wy; =1 —w]
—_ / —
w) = —025 + 0.125x; — 0.625w, Bounds: check fower bounds) 7 0.2 =1
3 1+ 05y + 2505 0<w <1 ! ’ 4z‘v’ + no constraint
P _— —_— 7 2 .
z 17.5 0.75x4 125w, 0<w, <2 s x4 enters
X3 = 2+ 4w, + 5w Bounds: optimal (integer) solution found:
Xy = 24 8w + 5w, 0<w <oo Wy =0—w =1, wh=0-—wp=2
z =16 — 6w| — 5w, 0<w, <2 z=16 — candidateinteger solution
w = 1
wy, =2.4
z=18
wy<2 w>3
w, =1.25
wy = Subproblem 2
z=17.5
w1 <1 wy>2
w; =1
Wy = 2
z=16 Subproblem 4
candidate
solution

Now we go back and solv&ubproblem 4. Sincew; > 2 we substitutew, = 2 4+ w3 wherews > 0 is integer.

check lower boundd€) £ —0.75 = w3, 0 < 1 = x3

w3 = —0.75 — 0.125x4 + 0.625w,  Bounds: . ] .
2 — w3 leaves, ratio testx, : no constraint
X3 = 1+ 05x4 + 25w, 0<w3z<oo Wl - 1.25/0.625 = 2
z = 175 — 0.75x4 — 125w, O0<w,<2 / 2° % '
2 =02 = — w) enters
wh =12 + 02x4 + 1l.6ws Bounds: optimal solution found:
X3 = 4+ x4+ 4wz 0<w;<oo w3=0—w =2, wh=12—-w, =08
z = 16 — X4 — 2wz 0<w, <2 7z =16

Optimal solution is fractional, but its value is= 16. Thus wedo not branch, since we already haveaandidate

integer solution of valuez = 16.

wy = 1
Wy = 2.4
z=18
wp <2 wy >3
w, =1.25
wy =2 Subproblem 2
z=17.5
w1<1 wy>2
w, =1 w =2
wy =2 w, = 0.8
z=16 z=16
candi(_jate %
solution
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Now we go back and solaubproblem 2 Sincew, > 3, we substitutev, = 3 + w4 wherew, > 0 is integer.

1 + 025x; — 025x, Bounds: check lower bound€) <1 =w,0 £ —0.6 = wy

wp = . : :

wy = —06 — 04xz + 02x4 0<w; < oo vty leaves, rafiotests : no SoTSTAI. &

z = 18 — 05x3 — 05x3 0<wy<oo Y42 U0/0.L = 2
- = — x4 enters

wp; = 025 — 0.25x3 — 1.25w, Bounds: optimal solution found:

Xy = 3+ 23+ Swyg 0<w;<oo g =025ws=0—w =3

z =165 — 15x3 — 25wy 0<wy<o0 7 =165

Optimal solution is fractional, but its value= 16.5 is more tharx = 16 of the candidate solution. It is still possible
that a better solution can be found by branching (here wergtite fact that optimat should also be an integer,
otherwise we would not need to branch). Simge= 0.25, we branch onv; < 0 andw, > 1.

w1 =1
wy =24
z=18
wy<2 wy>3
w, = 1.25 w, = 0.25
wy = wy, =3
z=17.5 z=16.5
w1<1 wq>2 w1 <0 wy>1
wp =1 w, =2
wy =2
Zzz 16 w2 =106'8 Subproblem 5 Subproblem 6
zZ=
candidate %
solution
Subproblem 5: Subproblem 6:
w; = 0.25 — 0.25x3 — 1.25w, Bounds: w; = 0.25 — 0.25x3 — 1.25w, Bounds:
xy = 3+ 2x3+ 5wy 0<w; <0 x4 = 3+ 2x3+ bSwy 1<w <oo
z =165 — 15x3 — 25wy 0<wy<o0 z =165 — 15x3 — 25wy 0<wy <o
Let us now solveSubproblem 5,
w; = 025 — 0.25x3 — 125w, Bounds: check lower bound€) < 0.25 = w1,0 <3 = x4
x4 = 3+ 2x3+ bwy 0<w <0 check upper boundsy; = 0.25 £ 0,x4 =3 < o0
z =165 — 15x3 — 25wy 0<wy<oo — replacew; by wy = 0 — w]
— —_
wj = —0.25 + 025x3 + 125wy Bounds: check lower boundd) £ —0.25=1w;,0 <3 =1x,
- — w) leaves, ratio testx3 : 1.5/0.25 =6
Xy = 34+ 2x3+ bwy 0<w <0 1 w0y 2.5/1.25 =2
= — — 4 ¢ L. . =
z = 165 1.5x3 25wy 0<wy < oo s w, enters
wy = 02 — 02x3 + 0.8w) Bounds: optimal solution found:
x4 = 4-— x3+ 4w 0<w <0 wh=0—w =0, wy=02—w=32
z = 16 — X3 — Zwi 0<wy <oco 7 =16

The solution has value = 16 which is no better than our candidate solution. We do notdran

We now solveSubproblem 6. Sincew; > 1, we substitutev; = 1 + ws, wherews > 0 and integer.

check lower bound€) £ —0.75 = w5, 0 < 3 = x4
— ws leaves, ratio testxs : no constraint
X4 : NO constraint
— no variable can enter> infeasibleLP

Since the problem is infeasible, we do not need to branch arg/mo further restriction can make it feasible).

ws = —0.75 — 0.25x3 — 1.25w, Bounds:
X4 = 3 + 2x3 + 5wy 0< w5 < oo
z = 165 — 15x3 — 25wy 0<wy< o

We now have solved all subproblems. We can thus summarize.
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w, = 1
wy =24
z=18
wy<2 wy>3
w, = 1.25 w, = 0.25
wy =2 wy =3
z=17.5 z=16.5
w1<1 w1 >2 w1<0 w1 >1
= ; wy =2 w; =0
wy = —
e wy = 0.8 wy =3.2 infeasible
- z=16 z=16 x
candidate % x
solution

We conclude that there exist an integer feasible solutiom ¢andidate solution), and it is also an optimal integer
solution:w; = 1, w, = 2 of valuez = 16. This concludes the algorithm.

Branch and bound for Knapsack

Max z = 8x; + 1lxp, + 6x3 + 4x4
5x1 + 7xp + 4x3 + 3x4 < 14

X1,X2,X3,X4 S {0/ 1}
z is integer

LP relaxation is called Fractional Knapsack. Can be solweddculating prices of items per unit of weight and
choosing items of highest unit price first.

tem | 1 | 2 | 3 | 4
Unitprice‘ =16 \ %:1.57\ =15 \ $=133

We pickx; = 1, since item 1 has highest unit cost. The remaining buddet is5 = 9. Then we picky, = 1, since
item 2 has next highest unit cost. The budget reduc@st& = 2. Then we pick item 3 which has next highest unit
cost, but we can only picks = 0.5 and use up all the budget.

The total price ix = 8 + 11 + 0.5 x 6 = 22. Sincex; = 0.5, we branch orx3 = 0 andx3 = 1.

X1:1

X2:1
X3=0.5

X4=0

z=122

JC3:0 JC3:1

Subproblem 1 Subproblem 2

Subproblem 2: x5 =1

Max 8x1 + 1lxp, + 6 + 4x4
5x1 + 7xp + 4 + 3x4 < 14

Max 6 + 8x; + 1lxp + 4x4

- 5x1 + 7xp + 3x4 < 10

Again we pickx; = 1 and budget reduces 1® — 5 = 5 so we can pick only, = 5/7 from item 2. The total price
isz=6+8+11 x 5 = 215. We branch on, = 0 andx, = 1.
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X1 =
Xy =

X3 = 0.5
X4 = 0
z=22
X3:0 X3:1
X1 = 1
Xy = ;
Subproblem 1 x3=1
X4 = 0
z=21%
X2:0 x2:1
Subproblem 3 Subproblem 4

Subproblem 3:x, =0
Max 6 + 8x1 + 4xy
5x1 + 3x4 < 10
Subproblem 4:x, =1

Max 17 + 8x; + 4xa pick x; = 3/5 and use up the budget
5x, + 3x, < 3 thetotalpriceis =17 +8 x 2 =218
o — branchony; = 0andx; =1

X1 =
X2 =

pickx; = 1 andx4 = 1 (budget is not used up completely)
the total priceix = 6+ 8+ 4 =18 — candidate solution

X3 = 0.5
X4 = 0
z=22
X3:0 JC3:1
X1 = 1
X2 = ;
Subproblem 1 x3=1
X4 = 0
z=21%
X2:O X2:1
X1 = 1
x, =0 =2
x3=1 Xy = 2
xy =1 X3 =
z=18 Xy =
candidate z =218
solution x1=0 x1=1
Subproblem 5 Subproblem 6

Subproblem 5:x; =0

Max 17 + 4xy

pick x4 = 1 and use up the budget
3X4 <3

Subproblem 4:x; =1

Max 25 + 4xy _ _
3x, < -2 probleminfeasible

the total price ix = 17+4 =21 — candidate solution

101
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Subproblem 1:x3 =0

pick x; = 1 thenx, = 1 which reduces the budget 2o
then we pickxy = 2/3 to use the up the budget.
Max 8x; + 1lx, + 4x4 The total price iz =8 + 11 +4 x § =213

Sx1 4 7xp + 3xy < 14 — we do not branch, sincez must be integer and so best integer

subproblem of Subproblem 1 has vatue< 21 but we already have a
candidate solution of value= 21

X1 = 1
Xy = 1
X3 = 0.5
X4 = 0
z=22
X3:0 JC3:1
X1 = 1 _
Xy = 1 )):1 : %
x3=0 2 : {
_2 X3 =
Y4 = 3 Xg4 = 0
z=213 z =218
% 7
X2:O X2:1
X1 = 1
X, =0 X = %
X3 = 1 X = 1
X4 = 1 X3 =
z=18 X4 =
candidate z =218
solution x1=1
X1 =0
x1 =0 infeasible
xp =1 X
X3 = 1
Xg4 = 1
z=21
candidate
solution

Short comparison of Integer Programming Methods

1. Cutting planes — adds a constrain at each step, does matthiance an integer solution found we stop

2. Branch-and-bound — branches into (independent) subgmsh does not add constraints, only changes bounds

on variables, if an integer solution is found, we cannot s&dpsubproblems must be explored before we can
declare that we found an optimal solution

3. Dynamic programming — building up a solution by reusingp@nhdent) subproblems; more efficient than
Branch-and-Bound but only works for some problems (foransg, it works for the Knapsack Problem but
not so much for the Traveling Salesman Problem)
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Dynamic Programming

Knapsack

Consider the Knapsack problem from the previous lecture.

Max z = 8x1 4+ 1lxp + 6x3 + 4xy
5x1 + 7xp + 4x3 + 3x4 < 14

X1,X2,X3,X4 S {0/ 1}

z is integer
X1 =
Xy =
X3=0.5
X4 =
z=22
JC3:0 JC3:1
Subproblem 1 Subproblem 2
Subproblem 1: x3 = 0 Subproblem 2: x3 =1
Max 8x1 + 11xp + 4x4 Max 6 + 8x1 + 1lxp; + 4xy
5x1 + 7xp + 3x4 < 14 5x1 + 7xp + 3x4 < 10

Note that every subproblem is characterized by the set odiréng objects (variables) and the totaldget (the right-
hand side). Observe that the above two subproblems onbrdifthe value of budget (as we can ignore the absolute
constant in the objective function). We should exploit #ysnmetry.

Instead of solving just for 10 and 14, we solve the subprobitamall meaningful values of the right-hand side (here
for valuesl, 2, .. .,14). Having done that, we pick the best solution. This may seasteful but it can actually be
faster. To make this work efficiently, we branch systemdl{iamn variablesxy, x,, . ..

Let us describe it first more generally. Consider the prokjahcoefficients are integers)

max C€1X1 + CpXp + ... + CuXp
d1x1 + dez 4+ ... 4+ dpyxy < B

x1,...,%, € {0,1}
Foreveryi € {1,...,n} andj € {1,..., B}, we solve a subproblem with variables . . ., x; and budgef.

103
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max ci1x1p + Cxp + ... + X
d1x1 + dez + ... + dixl- < ]
x1,...,% € {0,1}
Let f;(j) denote the value of this solution. We want the valug,dfB).

How can we calculatef;(j)? We observe that the optimal solution consisting of firsems either contains thieth
item or it does not. If it does not contain t¢h item, then the value of;(j) is the same as that ¢gf_1(j); the best
solution using just the firgst— 1 items. If, on the other hand, an optimal solution using thet fitems contains the
i-th item, then removing this item from the solution givesogtimal solution for first i — 1 itemswith budget j — d;.
(Convince yourself of this fact.) So the value £f;) is obtained by taking;_1(j — d;) and adding the value; of
itemi. We don’t know which of the two situations happens, but byrtgkthe better of the two, we always choose
correctly.

What this shows is that from optimal solutions to smallermsoblems we can build an optimal solution
to a larger subproblem. We say that the problemdysnal substructure.

As we just described, the functigiyj) satisfies the followingecursion:
. 0 i=0
fil)) = { max {fi1(j), ¢; + fi1(j—di)} i>1

We can calculate it by filling the table of all possible values

fi) 01 2 3 4 5 6 7 8 9 10 11 12 13 14
0 o o0 0 0 00 OO0 O O O O O o0 o0
1 0 o o 0o 88 8 8 8 8 8 8 8 8
2 0 0 0 0 0 8 8 &}é 11 1v1 11 19 19 19
3 0 0 0 0 6 8 11 11 14=14 17 19 19 19
4 0 0 0 4 6 8 11 12 14 15 17 19 19 21

4

(edges with no cost indicated ha$e cost)

The longest path (ibold) from s to t = (4, 14) gives the optimal solution.

Dynamic programming characteristics

— Problem can be divided into stages
— Each stage has a (finite) number of poss#tiéges each associated a value.
— Next stage only depends on the values of states of the pestage
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Resource allocation

Knapsack with fixed costs.

Investment 1: investingx; > 0 dollars yieldsc; (x1) = 7x1 + 2 dollars, where (0) = 0
Investment 2: investingx, > 0 dollars yieldsc; (x3) = 3x, 4 7 dollars, where, (0) = 0
Investment 3: investingxs > 0 dollars yieldsc3(x3) = 4x3 + 5 dollars, where3(0) = 0

(Note that if no money is invested, then there is no yield;ledd is non-linear.)
Suppose that we can invest $6,000 and each investment mashh#iple of $1,000. We identify stages
stages in stagei, we consider only investments. . ., i.
states the available budget as a multiple of $1,000, up to $6,000.
values f;(j) = maximum yield we can get by investirighousands of $ into investments #1,. .. ,#i.
0 i=0
recursion: f;(j) = { max {ci(k) + il —k)} i>1

ke{01,...j}

—_
N
(6]
I
a1
(o))

stage 0

Note: the arrow indicates from
which subproblem was an opti-

mal solution obtained 0 0 N\ 0
1 0 9 16 23 30 3 44

$16

$23 $30. $44

$29. $25 $21 $17. $13 $9 $0

Network representation (some weights not shown for monétyg)ja

Inventory problem

A company must meet demand in the next four months as follomanth 1:d; = 1 unit, month 2:d, = 3 units,
month 3:d3 = 2 units, month 4:d, = 4 units. At the beginning of each month it has to be determirmd many
units to produce. Production has a setup cost of $3 and théor $ach unit. At the end of the month there is holding
cost $0.50 for each unit at hand. The company’s warehousstoexnup to 4 units from month to month. The capacity



106 CHAPTER 13. DYNAMIC PROGRAMMING

of the production line allows at most 5 units to be produceaghenonth. Initially no products at hand. Determine the
minimum cost of production that meets the demand.

stages:production until (and including) month
states:number of units at hand at the end of month
values: f;(j) = the minimum cost of production that ends in monthith j units in the inventory
For example, if we have 4 units at the end of month 2, then wa meath 3 demand of 3 units if we either

e do not produce and are left with 1 unit, held for $0.50 total cost $0.50
e pay setup cost $3, produce 1 units for $1, and are left withi umeld for $1 total cost $5.00
e pay setup cost $3, produce 2 units for $2, and are left withit3 umeld for $1.50 total cost $6.50
e pay setup cost $3, produce 3 units for $3, and are left withit umeld for $2 total cost $8.00
Note that in our calculation with already include the hotglaost.
fim1(j+d;) no production k = 0
fi(j) = j x $0.50 + min
——— $3+k x $1 +fi_1(j+d;i—k)  productionk € {1,2,..., j+d;}
holding cost —
production cost
inventory
fiG) 0 1 2 3 4
| O \ _
| 85% )
4 13 15 16.5 18 20.5
5 20 - - - —
Shortest paths

All-pairs Shortest Paths: (Floyd-Warshall) given a network = (V, E) where each edget, v) € E has length/cost
cuv, determine the distance between every pair of nodes.

We can solve this problem using dynamic programming as@loNe label the vertices, vy, . . ., vy
stages:in stage consider only shortest paths going through intermediaties®,, . . ., v;
values: f;(1,v) = minimum length of path fronx to v whose all intermediate nodes are among . ., v;.

0 u=uw
folu,w) =< cuw uw€E
o uw ¢ E

filw,w) = min { fi1 (@), fia(n,0) + fia(05w)} fori =1

Single-source Shortest Paths{Bellman-Ford) find distances from a fixed sousde all other vertices
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stages:in stage consider only shortest paths using at mastiges
values: f;(#) = minimum length of a path going fromto u and having at mostedges
We havefy(s) = 0 andfy(u) = oo for all u # s, since we cannot use any edge at this stage. For later stages:

i) = min { fia (), mip {fi-2(0) + cuu} |

vuekE

Knapsack revisited
max ci1x1 + cxp + ... + cuxp
dixy + doxo + ... + dyxy < B
x1,...,%, € {0,1}
fi(j) = optimal solution using firstitems and bag of sizg
- j<o0
(=20 i=0
max {fi_1(j), ci+ fim1(j— di)} i>1

Alternative recursion (only for unbounded Knapsack)

tem | Weight (lbs) Priceg) " 2 10 poundbag

1 4 11 max 11x; + 7xp + 12x3
2 3 7 4x1 + 3xp + 5x3 < 10
3 5 12

X1,X2,x3 > 0 and integer
<(j) = the maximum total price obtained by fillingigound bag

recursion formula: i) = max <sc¢;+¢9(7—d;
8lj) = {1,2,3}{ i+8( 1)}
j>d;
We try to put itemi into the bag and fill the rest as best as possible (note thatwemeed that we have unlimited
number of each item rather than just one; it would not worlbioary Knapsack).

j o 1 23 4 5 6 7 8 9 10
¢()J0 0 0 7 11 12 14 18 22 23 25
2(0) =0 c1+g(3) =11+7 =18
ggg B 8 g(7) =maxg c+g(4)=7+11=18"
$(3) — max{ca + g(3—da)} — c2+ g(0) = 740 — c3+8(2) =12+0=12
7 c1+g(4) =11+ 11 = 22*
3(4)—max{ s on I §(8) = max e +g(5)=7+12 =19
c2+8(1)=74+0= c3+g(3)=1247=19
c1+g(1)=11+0=11 01 +g(5) =11+12 = 23*
g(5) =max{ c2+g(2)=7+0= g(9) =max{ ¢, +g(6) =7+14 =21
c3+g(0) =12+0=12" c3+g(4) =12411 = 23*
c1+g(2)=114+0=11 c1+g(6) =11+ 14 = 25*
g(6) =maxq c2+g(8)=7+7=14" ¢(10) = max{ ¢ +g(7) =7 +18 = 25*
c3+g(1) =12+0=12 c3+g(5)=12+12=24
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Optimal solution;g(10) =¢; + g(6) =c1+ (c2+g(3)) =c1+c2 + (c2+g(0)) =c1+c2 + 2
Best solution for a 10 pound bag: pick 2 items #2 and 1 item #& total value of $25.

@ ®
$12: $1 $12 $12 $12: $12:

Optimal solution (longest path) shownlitue color.

Scheduling
We have 7 job$,, j, . . ., j7 with processing timegy, p», . . ., p7 given as follows:
job ji ‘ i j2 3 Ja Js Je J7
processing
time p; 10 8 6 5 4 4 3
We wish to schedule all 7 jobs on 2 machines. The goal is tomiaa the completion time of all jobs.
njobsjy, ..., ju min z
processing timegy, ..., pn Yxij=1 i=1,...,n
i j
mmachmes_ o N Epixij <2 i=1,.m
v — 1 if job i scheduled on machine -
771 0 otherwise xij € {0,1}

stages:at stage we schedule firstjobsj, ..., j;
state: pair (1, tz) denoting used up timg on machine #1 and time on machine #2

value: f;(t1,t;) = 1if itis possible to schedule firgjobs on the two machines usingtime
on machine #1 ant) time on machine #2;

fi(t1, t2) = 0 if otherwise
(Note that the order of the jobs does not matter here; only lmclwmachine each job is executed.)
0 t1<0ort; <0
recursion: fi(ty, ) = { 1 i=0
max {fifl(tl —pita), fiir(t ta — Pi)} i>1

We either execute jojp on machine #1 or on machine #2. We pick better of the two option

answer: is given by taking smallestsuch thatf;(t,t) = 1

Machine#1 ‘ 2 ‘ Ja J6 ‘ J7

[
0 5 10 15 20
(How would you formulate the problem for 3 machines insteb2?)

|
Machine#2 ‘ 1 ‘ J3 ’ Js ‘
|
[
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Machine#1 ‘ Ja Jé ‘ J7 ‘

Machine#2 ‘ I ‘ J5 ‘

Machine#3 ‘ J2 ‘ J3 ‘
} } — } — — — } — } — } — }
0 5 10 15 20

Average Completion time:longest job last, assign to machines in a round robin fashiopptimal

Machine#1 ‘ J7 ’ Ja 1

Machine#2 ‘ J5 ‘ J2 ‘

Machine#3 ‘ Jo ‘ J3 ‘
"t
0 5 10 15 20

Average completion time 8% ~ 8.43 (note that movingy to any other machine does not change the average)

Traveling Salesman

A small company delivers from New York to its customers inghdioring cities (Washington, Pittsburgh, Buffalo, and
Boston). The distances (in miles) between cities are agvisll

New York (NY) 228 372 396 211
Washington (WA) 244 381 437
Pittsburgh (PI) 219 571

Buffalo (BU) 452
Boston (BO)

The company owns one delivery truck. In order to deliver tstemers in all the 4 cities, the truck departs from New
York and visits each city in turn before heading back to NewkYdo save on fuel, the company wants to find a route
that minimizes the total distance the truck has to travel.

We can think of the route as follows. At each point of our jayrwe are in some city and before coming to we
have visited (traveled through) all cities $n(a subset of cities). Note that neither citynor New York (our starting
city) is in the sefS.

stage:in stageS, we have travelled through all cities fh(a selected subset of cities)
state: city v, our current position on the route (after visiting all citia S)
value: f(S,v) = the minimum cost of travelling from New York towhile visiting all cities inS

Our goal is to findf({WA, PI,BU, BO}, NY). That is, we visit all cities and come back to New York.

In order to do so, we computgS, v) for all possible values o$ andv. How do we do that? Observe that if we
visited all cities inS and then arrived to, we must have arrived tofrom some cityu in the setS. The total distance
of such a journey is then the distance franto v plus the minimum distance we need to travel in order to atdve
u while visiting all cities inS \ {u}. We try all possible choices far and select the one that minimizes the total
distance.

Letc(u, v) denote the distance from cityto city v. Then the recursion is as follows:
recursion: £(S,v) = min ( F(S\ {u},u) + c(u,v))
ues

initial conditions: f(®,v) = ¢(NY,v)
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NY

F({WA, BU}, BO) {BU}, WA) + c(WA, BO) = 777 + 437 = 1214

110
We calculate the values gf(S, v) for smaller sets first and S\ o
then gradually for bigger sets. Having done so in this order;
we canreusethe values we calculated earlier (for smaller %)
sets). This is thenain principle of dynamic programming. {WA}
Let us calculate the values. (P1}
f(@,WA) =c(NY,WA) =228 {BU}
f(@,PI) =c¢(NY,PI) =372 {BO}
f(@,BU) = ¢(NY, BU) = 396
#(®, BO) = ¢(NY, BO) = 211 {wa, Piy
F({WAY, PI) = min{ f(®, WA) + c(WA, PI)} {wa, BU}
— 208 + 244 = 472 {WA, BO}
f({WA}, BU) = min{f(®, WA) + c¢(WA, BU)} {PI,BU}
= 228 + 381 = 609 {PI,BO}
f({WA},BO) = min{f(®,WA) + c(WA, BO) } (BU, BO}
= 228 + 437 = 665 ’
F({PI},WA) = min{f(®, PI) + c(PI, WA)} {WA, PI, BU}
=372+ 244 = 616 {WA, PI, BO}
f({PI}, BU) = min{f(®, PI) + c(PI,BU)} {WA, BU, BO}
:372—1-219:591 {PI,BU, BO}
=372+4571 =943
BU},WA) = min{f (@, BU) + c¢(BU,WA) } = 396 + 381 = 777
f{BU}, WA) {f( ) +c( )}
f({BU},PI) = min{f(®, BU) +c¢(BU,PI)} = 396 + 219 = 615
f({BU}, BO) = min{f (@, BU) + ¢(BU,BO) } = 396 + 452 = 848
f({BO},WA) = min{f (@, BO) + ¢(BO, WA)} = 211 4 437 = 648
f({BO}, PI) = min{f(®, BO) + ¢(BO, PI)} = 211+ 571 = 782
f({BO}, BU) = min{f(@, BO) 4+ ¢(BO, BU) } = 211 + 452 = 663
PI},WA) 4+ ¢(WA, BU) = 616 + 381 = 997
f({WA, PI},BU) = min fFQPI} ) Fel )
’ C , = =]
f({WA},PI) 4+ c(PI, BU) = 472 + 219 = 691*
PI},WA) + c¢(WA, BO) = 616 + 437 = 1053
(WA, P1}, 5O) F{PI}, ( )
f({WA},PI)+c(PI, BO) = 472 + 571 = 1043*
BU}, WA) + c(WA, PI) = 777 4+ 244 = 1021
f({WA, BU}, PI) = min fBUy, ) +el )=
f({WA},BU) + ¢(BU, PI) = 609 + 219 = 828*

{WA}, BU) + c(BU, BO) = 609 + 452 = 1061*

F({WA, BO}, PI) =

f(

f(

F({BOY, WA) + c(WA, PI) = 648 + 244 = 892*
{ F({WA}, BO) + c(BO, PI) = 665 + 571 = 1236

({BO},WA) + c(WA, BU) = 648 + 381 = 1029*

f({WA, BO}, BU) = min { f
f({WA}, BO) + c(BO,Bu) =665+ 452 = 1117

{PI}, BU) + c(BU, WA) = 591 + 381 = 972

F({PL,BU}, WA) = min { £
f({BU}, PI) + c(PI, WA) = 615 + 244 = 859*

{PI}, BU) + ¢(BU, BO) = 591 + 452 = 1043

| f(
f({PI,BU},BO) = mm{ F({BUY, PI) + c(PI, BO) = 615+ 571 = 1186

228 372 396 211
472 609 665
519 943
848

616
777 615
648 782 663
691 1043
828 1061
892 1029
859
1026

1115 882

1043
1001

1143
1111
1248
1126

1354



({PI}, BO) + c(BO, WA) = 943 + 437 = 1380

F({P1, BO}, WA) = min{ f
F({BOY, PI) + c(PI, WA) = 782 + 244 = 1026*

({PI}, BO) + c(BO, BU) = 943 + 452 = 1395

f({PI,BO},BU) = min{ f

f({BU}, BO) + ¢(BO, WA) = 848 + 437 = 1285

f({BU, BO}, WA) = min{
f({BO}, BU) 4 c(BU,WA) = 663 + 452 = 1115*

f({BU, BO}, PI) = min{ ;({Bu}'BO) +¢(BO, PI) = 848 + 571 = 1419

({BO}, BU) + ¢(BU, PI) = 663 4 219 = 882*

F({WA, PI}, BU) + ¢(BU, BO) = 691 + 452 = 1143*
F({WA, PI,BU},BO) =min{ f({WA,BU},PI)+ c(PI,BO) = 828 + 571 = 1399
F({PI,BU},WA) + c(WA, BO) = 859 + 437 = 1296

f({WA, P}, BO)
F({WA,PI,BO},BU) =min<{ f({WA,BO},PI)
f({PI,BO}, WA)
F({WA, BU}, BO

( c(BO, BU) = 1043 + 452 = 1495

(

(

( )
f({WA,BU,BO},PI) =min<{ f({WA,BO},BU)

( )

(

(

(

c(PI,BU) = 892 +219 = 1111*
c(WA, BU) = 1026 + 381 = 1407
¢(BO, PI) = 1061 4 571 = 1632
c(BU, PI) = 1029 4 219 = 1248*
c(WA, PI) = 1115 4 244 = 1359

+ + +

+ o+ +

f({BU,BO}, WA

F({P1,BU}, BO) + c(BO, WA) = 1043 + 437 = 1480
F({PI,BU,BO},WA) =min<{ f({PI,BO}, BU)+ c(BU, WA) = 1001 -+ 381 = 1382

F({BU,BOY, PI) + c(PI, WA) = 882 + 244 = 1126*
F({WA, P1,BU},BO) + ¢
f({WA, PI, BO}, BU) +
f({WA, BU, BO}, PI) + ¢
f({PI1,BU,BO}, WA) +

c
f({WA, PI, BU, BO}, NY) = min

c

~ o~~~

Optimal solution:

f({WA,PI,BU,BO},NY) = f({WA,PI,BU},BO)+ c(BO,NY)

= f({WA,PI},BU) + c(BU, BO) + ¢(BO, NY)

= f({WA}, PI) +c(PI,BU) +¢(BU, BO) +¢(BO,NY)
(

= f(@,WA) + c(WA, PI) + ¢(PI, BU) + ¢(BU, BO) + ¢(BO, NY)
= ¢(NY,WA) 4 c(WA, PI) + ¢(PI, BU) + ¢(BU, BO) 4 ¢(BO, NY)

Travel from New York to Washington to Pittsburgh to BuffatoBoston and back.
Thetotal travel distance 1354 miles.

BO,NY) = 1143 + 211 = 1354*
BU,NY) = 1111 + 396 = 1507
PI,NY) = 1248 + 372 = 1620
WA, NY) = 1126 + 228 = 1354*

111
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({BU,BO}, PI)

({BU,BO},WA)

({Bo},WA)‘ ({P1,BO},BU) x

BU, BO}, WA)
- ({PL,BO}, WA)
24.
({P1,BU},BO) 28
({WA,BU, BO}, PI)
452

452

XX

X, X/
“"
{w.
N\

N
@\
@ / A ({WA, P1,BO},BU)
) ‘ NS
G / S
S

({WA, PI,BU}, BO)

({WA,PI},BO)

({WA},PI)

({WA,PI},BU)

The cost on edges indicates the increase in distance whigpatigular action (decision) is taken.
Optimal solution shown iblue — longest path fromource to ({WA, P1, BU, BO}, NY).
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Analysis of efficiency

In the previous chapters, we have discussed various cotignabmethods for optimization problems such as finding
optimal solutions to linear programs (Simplex), findingioyat! paths and flows in networks (Dijkstra, Ford-Fulkerson,
Network Simplex), solving integer linear programs (Cudtiplanes, Branch-and-Bound), and finally optimization
using recursive methods leveraging memory (dynamic progriag).

Some of these methods allowed us to solve the same proble difierent approaches (for instance, we can solve
shortest paths using the Simplex method, or Dijkstra’srtlgm, or dynamic programming). In order to understand
the benefits of these different methods, we need to be abtapare them in a uniform way. (We will be deliberately
vague; a rigorous treatment of this subject is beyond thpesobthis text.)

Let us first discuss in rough numbers the number of stepsdtipes) of each of the methods.

Dynamic Programming

e stagesl,2,...,T

e statesl,2,..., M (for each stage)

e nextstage computed from values pfevious stage

e recursive formula for the value of each state

e objectiveis the value of a specific state in theest stageT

e using the recursive formula, we calculate the valuesfmry stageandevery state
— M stages
— T states

— altogethetM x T states to evaluate
— for each state and stage we look atMllIstates of the previous stage
and calculate the best answer M calculations

altogethetM? x T calculations using/I> memory

Simplex algorithm

The number of steps is proportional to the numbedrases(dictionaries) we go through. To do so, we need to make
sure not to encounter the same basis twice during the ctitmuldor instance, by Bland’s rule).

e 1 variables
e m equationsi > m) "
e each basis consists of a selectiomofariables— at most(m) different bases

Therefore Simplex method takes at mg$} pivotting steps. This is roughly” for smallm, but aroun®” for largem

(saym = n/2). Note that this seems like a very loose (and pessimisttapage. Does the worst-case really happen?
Can we get a better general estimate? Unfortunately, therexamples which exhibit this worst-case behavieur

113
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Klee-Minty examples
for n = 3, this looks as follows

n
n—j .
max ]; 107 max 100x; + 10x; + x3

i1 s.t. X1 <1
sit. (2 y 10f*fx]-) +x <1000 (i=1,2,...,n) 20x1 + ¥ < 100
i=1 200x1 + 20x, + x3 < 10,000
x]‘ > 0 (j:1,2,...,7/l) X1,X2,X3 > 0

If at every step the entering variable is chosen to be the dthdavgest coefficientin z, then the Klee-Minty examples
go through2™ — 1 bases before finding the optimum.

Branch-and-Bound

e each subproblem is a linear program (solved by Simplex arattethods)
e only bounds on variables change sizeof the LP is thesamein each subproblem
e possibly2” subproblems (unavoidable in general, even if we branchtixagce on each variable)

Cutting Planes

at each point we havenly onelinear program (no subproblems)

each step adds one new constraint and one new variable

the linear prograngrows at each step

possibly2" steps before optimum reached (unavoidable in general)

could be much worse than Branch-and-Bound once the sizedfRtbecomes too big
(recall that with BnB the LP remains the same size in all soblgms)

Network Algorithms

Dijkstra

e n nodesyn edges— n steps (one for each node)
e each step involves: finding a smallest vafl{e ), and updating other valuegv)
— roughly= 2n calculations

altogether 212 operations (can be improvedte m log n with special data structures)

Ford-Fulkerson (Augmenting path algorithm)

e 1 nodes edges

e each steonstructsthe residual network, finds aaugmenting pathand augments the flow
— roughly=: 2(n + m) operations for each step

e at mostn x m steps needed if shortest augmenting path is used (Edmoaugy-K

altogethers 2n%m operations needed (can be improvedtmm by additional tricks)

Network Simplex (Cycle cancelling algorithm)

e n nodes edges

e each stegalculatesshadow prices and reduced costs, finds a cyotgpf and adjusts the flow
— roughly=: 2n 4+ m operations for each step

e at most~ nmlog(Cn) steps needed if minimum mean-cost cycle is used (GoldbangT)
whereC is largest cost of an edge

altogether~ 21n%m log(Cn) operations needed (can be improvedtam by additional tricks)

Other Network Problems
n nodesyn edges
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1. Transportation Problem: same as Network Simplex nm

2. Assignment Problem:the number of required steps can be shown to be at giast
— altogethers \/nm operations need

3. All-pairs shortest paths (Floyd-Warshall):
e nodes are labeled, ..., v,
e at each stepwe improve estimaté(u, v) on the distance betweenandv by considering paths from

to v passing through; (and some of the, ..., v;_1) — n® calculations in each step
altogethen* operations

4. Single-source shortest path (Bellman-Fordyvith general edge costs (negative costs allowed)
e at step we consider paths usingdges— m calculations in each step
altogethem x m operations

14.1 Algorithmic Complexity

a way to compare efficiency (speed) of different computatiorethods (algorithms) and corresponding computational
problemsHow to measure efficiency of algorithms?Standard practice is to ask:

“How doesthealgorithm scalewheninputs getlarge?”

i.e., how muctime or memory f(n) it takes to compute a solution if the input data has size

Algorithm
O An algorithm A

Input x )
— takes annput x (numbers),
— performs a certain number of operations (additions, plidations),

— — produces aoutput .A(x) (a number, answer yes/no)

Algorithm A time complexﬂyz nqmber of (elementary) operatlons performed

space complexity= size of memory used during the computation

time > space
f(n) = worst casetime complexity of A for inputs of sizen
(maximum number of operations thdtperforms on any input of size)

Asymptotic notation

We are interested in the behaviourfdf1) asn goes to infinity. We use the following asymptotic notation.

For two functionsf, ¢ : R — R, we say thaff is O(g) “the order ofg”, and
write f = O(g), if there exist constants> 0 andN > 0 such that

f(n) <c-g(n)foraln> N.

Example: let f(n) = n? +n+ 1 andg(n) = n?. Thenf = O(g), since for
c =2andn > N = 2 we have

N f(n)=n*+n+1<2-g(n)=2n2

Growth of functions

We need to highlight the growth of various complexity funat we shall encounter.
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f ( n ) \n 2 3 5 10 20 50 100 1000 10000 100000 1000000 10000000
10g2 n 12 2 3 4 6 7 10 13 17 20 23
n 2 3 5 10 20 50 100 1000 10000 100000 1000000 10000 000
n 10g2 ni| 2 s 12 33 86 282 664 9966 132877 1660964 19 931 569 232534967
nld 3 s 1 32 89 354 1000 31623 1000000 31622777 1000000000 31622276 60
n2 4 9 25 100 400 2500 10000 1000000 100000000 10000000000 000000 100000000000
000000 000
n> 6 16 56 316 1789 17678 100 000 31622777 10000 900 Saeaa77 1000000000 316227766 016
n3 8 27 125 1000 8000 125000 1000000 1000000000 000000 1000000990 100000000 090
n* 16 81 625 10000 160000 6250000 100000000 300300 10000000000 100000000 000000
on . s " 1024 tossre 1129899905 1267650600228 229 401456
n! s 6 120 Soams00 2432902008176 30414093 201713378 043 612608 165 064 768844 377 641 560
nh 4 27 3125 10000000000 10457 600 000000 000 000 8881764 167 001,252 323 369 053 344 726 562 500 000 000 000 G000UDO0

1. The first block are what is considerfadt or practical algorithms (can handle inputs of size billions).
2. The second block aeficient algorithms (inputs can range up to size millions).
3. The last block are algorithms fbard problems (can only handle inputs up to size hundred or so).

Summary of complexity of selected problems

In the following, the input to each of the problems will costof
— n numbers (on + m numbers, on x m numbers whera > m in case of LP)

— L will denote the number of bits needed to represent any o&thambers
(in a typical computer using IEEE754 floating point numhees 24, 53, 64, or 113)

Problem Time complexity | Space complexity
Linear Programming (Simplex):n variablesjn constraints 20(m) O(n-m)
Linear Programming (Interior point):n variablesyn constraints O(n3L) O(n-m)
Shortest path(Dijkstra): n nodes edges O(m+n-log(n)) O(n)
Shortest path (Bellman-Ford)n nodes edges O(m-n) O(n)
All-pairs Shortest paths (Floyd-Warshall):n nodes;n edges O(n*) O(n?)
Minimum Spanning tree (Prim, Kruskal):n nodes;n edges O(m -log(n)) O(m)
Assignment problem n nodesyn edges O(y/nm) = O(n??)
Maximum flow: n nodes;n edges O(m-n) = 0(n3) O(m)
Minimum cost flow (Network Simplex): nodesn edges O(m? - log?(n)) O(m)
0-1 Knapsack(Integer LP):# items 20(n) O(n)
0-1 Knapsack(Dynamic program)u items, budgeB O(n-B) O(n- B)
Knapsack (Dynamic program)u items, budgeB O(n-B) O(B)
Machi_ne Schedulin_g(Dynamic pr_ogrgmming): O(n-m-T™) O(n-T™)
n jobs,m machines, completion timg
Machine Scheduling(Integer LP) O(m™") O(n)
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Inventory problem (Dynamic program):
n months, warehouse si2d

Inventory problem (Integer LP) o(M™) O(n)

O(n-M?) | O(n-M)

Important note: recall that when we solving linear programs we have no gueedthat the solution we obtain will
be an integer point, even if there exists an optimal integéntp Finding an integer solution to a linear program is in
general difficult.

However, this is not the case for Network problems (Shogatits, Maximum flow, Minimum-cost flow).

Theorem 6. If all capacities/source supplies/destination demanoddénet supplies are integers, then

(i) Everybasic feasible solutiorto the Linear Program for Shortest path Problem (Maximum fRvablem, Trans-
portation Problem, Minimum-cost flow Problem) is integrall #ariables are integers).

(i) There exists amptimal integer solution (to the above problems) because one such a soligtimasic.

(iii) Moreover, Dijkstra’s (Ford-Fulkerson, Transportain Simplex, Network Simplex) algorithm finds this solution
efficiently (in polynomial time).

So if your problem is a Network problem (or you can turn yourih#® an equivalent Network problem), then optimal
integer solution can be found efficiently (unlike using puieP techniques).
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