Personal tools
You are here: Home Research Trends & Opportunities Smart City Technology Urban Controlled Environment Agriculture (CEA)

Urban Controlled Environment Agriculture (CEA)

Chicago_DSC00514
(Chicago, Illinois - Alvin Wei-Cheng Wong)

 

As our metropolitan areas start to sprawl out into the countryside the sustainability of traditional farming methods is seriously coming into question. It is estimated that the US loses at least 1.5 million acres of productive farmland to urbanization every year. But what kind of alternatives are being produced to satisfy our rapidly increasing demand for sustenance? Increasing urbanization and the high environmental and monetary costs of delivering power, water, and food to cities, suggest that a low impact form of controlled environment agriculture (CEA) is becoming more and more widespread in urban settings. Farming has migrated from the fields to the cities and moved into the developed environment. CEA involves a combination of engineering, plant science and computer-managed facility control technologies used to optimize plant growing systems, plant quality and production efficiency while optimizing resources including water, energy, space, capital and labor. Environmental impacts of urban CEA can be aggressively reduced through carbon neutral energy supply, water recapture and recycling, and siting on pre-existing or underutilized structures. 

With state-of-the-art, clean technology (Photonics in agriculture) utilizing specialized Light Emitting Diodes (LEDs) and a totally controlled growing environment without sun or soil (i.e., sensor-controlled hydroponic and aeroponic agriculture systems), vertical (and rooftop) farming or urban agriculture would cultivate plant or animal life within dedicated or mixed-use skyscrapers in urban settings. Instead of having a single layer of crops over a large land area, vertical farming have stacks of crops going upwards in existing underutilized warehouses or multi-story buildings. Next-generation LED grow lights provide artificial light used for plant growth. They offer low power, high-efficiency, uniform light pattern, homogenous light distribution at precisely the right wavelengths and color ratios needed for superior photosynthetic response. Plant light has photons from the blue to red (400–700 nm) part of the spectrum. This is called growth light. Plant growth is a function of photosynthesis. One simple example is in horticulture where synthetic blue and red light from low-cost light emitting diodes (LEDs) are programmed for efficiently controlling the growth rate and color of vegetables, flowers, ornamental plants, and fruits. The advantages of vertical farms are numerous, including year-round crop production, faster harvest cycles,  predictable results, protection from weather, use much less water than traditional farming, superior food safety and less environmental impact, support urban food autonomy and reduced transport costs. Vertical farms are a new, environmentally friendly way to provide the huge amounts of fruits and vegetables demanded by cities across the globe.

 

Possible Research Topics

 



More Information on Urban Controlled Environment Agriculture

 

[MIT]: The Open Agriculture intiative (OpenAg) - Farming for the Future - An open source ecosystem of food technologies to create healthier, more engaging and more inventive food systems. Grow local, from anywhere.


 

[More to come ...]


Document Actions